EVT �? CAViaR 모형�? �?�한 국고채 VaR 예측모형 분�? (VaR Forecasts for Korea Treasury Bonds via EVT and CAViaR Models)

Jaeho Yun
{"title":"EVT �? CAViaR 모형�? �?�한 국고채 VaR 예측모형 분�? (VaR Forecasts for Korea Treasury Bonds via EVT and CAViaR Models)","authors":"Jaeho Yun","doi":"10.2139/ssrn.3204997","DOIUrl":null,"url":null,"abstract":"Korean Abstract: 본 논문�?� 시장리스�?��?� 주�?� 측정수단�?� VaR(value at risk)�?� 여러 예측모형�?� 한국�?� 국고채(1년, 5년, 10년 만기 할�?�채) 보유수�?�률�? �?용하여 비�? 분�?하였다. 특히 EVT(extreme value theory)를 �?용한 모형과 CAViaR(conditional autoregressive value at risk) 모형�?� 예측성과�? 초�?�?� 맞추었다. 실�? 분�? 결과, 채권 보유수�?�률�?� GARCH(generalized autoregressive conditional heteroskedasticity) 모형�? 필터�?한 후 EVT를 �?용한 EVT-GARCH 모형�?� 성과가 1% �? 5% VaR 예측 모�?�?게서 우수한 것으로 나타나, 기존�? �?리 사용�?�고 있는 역사�? 시뮬레�?�션�?�나 RiskMetrics 등�?� �?�함한 본 논문�?� 고려하고 있는 여러 모형 중�?서 가장 우수한 VaR 예측성과를 나타났다. 한편, CAViaR 모형들�?� 경우 �?�부 모형�?� 1% VaR�?서 우수한 예측성과를 보였지만 EVT-GARCH 모형�?� 성과�?는 미치지 못하였다. English Abstract: In this paper, we compare various forecasting models for VaR(value at risk), which is the main measure of market risk, by applying them to Korea Treasury Bonds (1-year, 5-year, and 10-year maturity discount bonds). In particular, we focus on the predictive performance of the extreme value theory(EVT) models and the conditional autoregressive value at risk(CAViaR) models. Our empirical analysis shows that the EVT-GARCH model, which uses the EVT after filtering bond returns through the GARCH(generalized autoregressive conditional heteroskedasticity) model, performs well in the 1% and 5% VaR forecasts. On the other hand, some CAViaR models show good forecasting performance at 1% VaR, but not sufficient to outperform the EVT-GARCH model.","PeriodicalId":166226,"journal":{"name":"Korea Deposit Insurance Corporation (KDIC) Research Paper Series","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Deposit Insurance Corporation (KDIC) Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3204997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Korean Abstract: 본 논문�?� 시장리스�?��?� 주�?� 측정수단�?� VaR(value at risk)�?� 여러 예측모형�?� 한국�?� 국고채(1년, 5년, 10년 만기 할�?�채) 보유수�?�률�? �?용하여 비�? 분�?하였다. 특히 EVT(extreme value theory)를 �?용한 모형과 CAViaR(conditional autoregressive value at risk) 모형�?� 예측성과�? 초�?�?� 맞추었다. 실�? 분�? 결과, 채권 보유수�?�률�?� GARCH(generalized autoregressive conditional heteroskedasticity) 모형�? 필터�?한 후 EVT를 �?용한 EVT-GARCH 모형�?� 성과가 1% �? 5% VaR 예측 모�?�?게서 우수한 것으로 나타나, 기존�? �?리 사용�?�고 있는 역사�? 시뮬레�?�션�?�나 RiskMetrics 등�?� �?�함한 본 논문�?� 고려하고 있는 여러 모형 중�?서 가장 우수한 VaR 예측성과를 나타났다. 한편, CAViaR 모형들�?� 경우 �?�부 모형�?� 1% VaR�?서 우수한 예측성과를 보였지만 EVT-GARCH 모형�?� 성과�?는 미치지 못하였다. English Abstract: In this paper, we compare various forecasting models for VaR(value at risk), which is the main measure of market risk, by applying them to Korea Treasury Bonds (1-year, 5-year, and 10-year maturity discount bonds). In particular, we focus on the predictive performance of the extreme value theory(EVT) models and the conditional autoregressive value at risk(CAViaR) models. Our empirical analysis shows that the EVT-GARCH model, which uses the EVT after filtering bond returns through the GARCH(generalized autoregressive conditional heteroskedasticity) model, performs well in the 1% and 5% VaR forecasts. On the other hand, some CAViaR models show good forecasting performance at 1% VaR, but not sufficient to outperform the EVT-GARCH model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
evt�?富裕模型�?�?是国库债VaR预测模型吗?(VaR Forecasts for Korea Treasury Bonds via EVT and CAViaR Models)
Korean Abstract:本论文?我知道了,我知道了��?是测量手段吗?�var (value at risk)�?是各种预测模型吗?�韩国�?国库债(1年、5年、10年满期)持有数呢?�?还真灵验生气了。特别是EVT(extreme value theory) ?灵活的模型和CAViaR(conditional autoregressive value at risk)模型这是预测的成果初��?凑齐了。�?分�?结果债券持有数是多少?这是generalized autoregressive conditional heteroskedasticity模型过滤器�?之后还会做EVT ?这是神准的EVT-GARCH模型成果是1%吗?百分之五的虚拟实技预测,什么?在这里表现得很优秀啊�?使用�?今天的历史是什么?是方程式吗?是方程式吗?还有风险投资等等��?这篇论文还算不错你在考虑的各种模型中西显示出最优秀的VaR预测成果。另一方面,你知道那些有线电视模型吗?��?是模型吗?�1% var�?虽然取得了优秀的预测成果,但这是EVT-GARCH模型��成果?——编者注】没有达到。english abstract:In this paper, we compare various forecasting models for VaR(value at risk), which is the main measure of market risk, by applying them to Korea Treasury Bonds (1-year, 5-year,10-year maturity discount bonds。the predictive performance of the extreme value theory(EVT) models and the conditional autoregressive value at risk(CAViaR) modelsOur empirical analysis shows that the EVT-GARCH model, which uses the EVT after filtering bond returns through the GARCH(generalized autoregressive conditional heteroskedasticity) modelperforms well in the 1% and 5% VaR forecasts。On the other hand, some CAViaR models show good forecasting performance at 1% VaR, but not sufficient to outperform the EVT-GARCH model。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVT �? CAViaR 모형�? �?�한 국고채 VaR 예측모형 분�? (VaR Forecasts for Korea Treasury Bonds via EVT and CAViaR Models) 다(多)시장 정보를 활용한 금융시장 불안정성 지수 개발�? 관한 연구-CISS 방법론�?� 중심으로- (A Proposal for a Systemic Stress Index in Korea-A CISS Approach) 정리금융회사�? 대한 조세지�? 제공방안 분�? (How to Provide Tax Benefits to Resolution Financial Institution) 국내 신용카드사 제공서비스 분석과 시사점: 할인 및 적립 혜택을 중심으로(Analyzing the Pattern of Credit Card Companies’ Optional Services Based on Consumers’ Credit Card Usage in the Korean Credit Card Industry) 채무위기와 유동성 지원 제도의 효과 (The Effectiveness of Liquidity Provision During Debt Crises: Evidence from Korean Firm-Level Data)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1