Second-order multilayer perceptrons and its optimization with genetic algorithms

M. Hwang, M. H. Kim, Jin-Young Choi
{"title":"Second-order multilayer perceptrons and its optimization with genetic algorithms","authors":"M. Hwang, M. H. Kim, Jin-Young Choi","doi":"10.1109/CEC.2000.870360","DOIUrl":null,"url":null,"abstract":"There have been many efforts to combine multilayer perceptrons (MLP) and radial basis function networks (RBFN). Among these works, circular backpropagation networks (CBPN) achieved both MLP and RBFN's properties by simply modifying MLP. In this paper, CBPN is extended to take all first and second-order terms of data as input. We show that the proposed network can represent not only MLP and RBFN but also ellipsoidal basis function networks (EBFN). Using Baldwin effect-based genetic algorithm, we develop an approach for optimizing this network.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There have been many efforts to combine multilayer perceptrons (MLP) and radial basis function networks (RBFN). Among these works, circular backpropagation networks (CBPN) achieved both MLP and RBFN's properties by simply modifying MLP. In this paper, CBPN is extended to take all first and second-order terms of data as input. We show that the proposed network can represent not only MLP and RBFN but also ellipsoidal basis function networks (EBFN). Using Baldwin effect-based genetic algorithm, we develop an approach for optimizing this network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二阶多层感知器及其遗传算法优化
将多层感知器(MLP)与径向基函数网络(RBFN)相结合已经取得了许多成果。其中,循环反向传播网络(circular backpropagation networks, CBPN)通过简单修改MLP实现了MLP和RBFN的特性。本文将CBPN扩展到将数据的所有一阶和二阶项作为输入。结果表明,该网络不仅可以表示MLP和RBFN,还可以表示椭球基函数网络(EBFN)。利用基于Baldwin效应的遗传算法,提出了一种优化网络的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1