Neural Sliding mode control of a regenerative braking system for electric vehicles

Mario Antonio Ruz-Canul, Larbi Djilali, J. Ruz-Hernández, E.N. Sanchez-Camperos
{"title":"Neural Sliding mode control of a regenerative braking system for electric vehicles","authors":"Mario Antonio Ruz-Canul, Larbi Djilali, J. Ruz-Hernández, E.N. Sanchez-Camperos","doi":"10.35429/jid.2022.15.6.10.18","DOIUrl":null,"url":null,"abstract":"This paper summarizes the work done on the development of a Neural Sliding Mode Controller (NSMC) for a regenerative braking system used in an electric vehicle (EV), which is composed of a Main Energy System (MES) and an Auxiliary Energy System (AES). This last one contains a buck-boost converter and a super-capacitor. The AES aims to recover the energy generated during braking that the MES cannot retrieve and use later during acceleration. A neural identifier trained with the Extended Kalman Filter (EKF) has been used to estimate the buck-boost converter real dynamics and to build up the NSMC, which is implemented to regulate the voltage and current dynamics in the AES. Simulation results, illustrate the effectiveness of the proposed control scheme to track time-varying references of the AES voltage and current dynamics measured at the buck-boost converter and ensure the charging and discharging operation modes of the super-capacitor. In addition, the proposed control scheme enhances the EV storage system efficiency and performance, when the regenerative braking system is employed.","PeriodicalId":447861,"journal":{"name":"Revista del Diseño Innovativo","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista del Diseño Innovativo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35429/jid.2022.15.6.10.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper summarizes the work done on the development of a Neural Sliding Mode Controller (NSMC) for a regenerative braking system used in an electric vehicle (EV), which is composed of a Main Energy System (MES) and an Auxiliary Energy System (AES). This last one contains a buck-boost converter and a super-capacitor. The AES aims to recover the energy generated during braking that the MES cannot retrieve and use later during acceleration. A neural identifier trained with the Extended Kalman Filter (EKF) has been used to estimate the buck-boost converter real dynamics and to build up the NSMC, which is implemented to regulate the voltage and current dynamics in the AES. Simulation results, illustrate the effectiveness of the proposed control scheme to track time-varying references of the AES voltage and current dynamics measured at the buck-boost converter and ensure the charging and discharging operation modes of the super-capacitor. In addition, the proposed control scheme enhances the EV storage system efficiency and performance, when the regenerative braking system is employed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车再生制动系统的神经滑模控制
本文综述了由主能量系统(MES)和辅助能量系统(AES)组成的电动汽车再生制动系统神经网络滑模控制器(NSMC)的研制工作。最后一个包含一个降压转换器和一个超级电容器。AES旨在回收制动过程中产生的能量,而MES无法回收这些能量,并在随后的加速过程中使用。利用扩展卡尔曼滤波(EKF)训练的神经辨识器来估计buck-boost变换器的实际动态,并建立NSMC,实现对AES中电压和电流动态的调节。仿真结果表明,所提出的控制方案能够有效地跟踪升压变换器测量到的AES电压和电流动态的时变参考参数,并保证超级电容器的充放电工作模式。此外,当采用再生制动系统时,所提出的控制方案提高了电动汽车储能系统的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spur gears with contact ratio less than unity Neural Sliding mode control of a regenerative braking system for electric vehicles MAC-based Artificial Neural network for voice command recognition Control based on GLRT algorithm for Unmanned Aerial Vehicle Design and characterization of a prototype anaerobic reactor for domestic wastewater treatment using fixed biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1