Workload-aware worst path analysis of processor-scale NBTI degradation

S. Bian, Michihiro Shintani, Shumpei Morita, H. Awano, Masayuki Hiromoto, Takashi Sato
{"title":"Workload-aware worst path analysis of processor-scale NBTI degradation","authors":"S. Bian, Michihiro Shintani, Shumpei Morita, H. Awano, Masayuki Hiromoto, Takashi Sato","doi":"10.1145/2902961.2903013","DOIUrl":null,"url":null,"abstract":"As technology further scales semiconductor devices, aging-induced device degradation has become one of the major threats to device reliability. In addition, aging mechanisms like the negative bias temperature instability (NBTI) is known to be sensitive to workload (i.e., signal probability) that is hard to be assumed at design phase. In this work, we analyze the workload dependence of NBTI degradation using a processor, and propose a novel technique to estimate the worst-case paths. In our approach, with careful examination, we exploit the fact that the deterministic nature of circuit structure limits the amount of NBTI degradation on different paths, and proposes a two-stage path extraction algorithm to identify the invariable critical paths in the processor. Through numerical experiment on a MIPS32 processor, we performed a detailed signal probability analysis, and successfully extracted 85 invariable critical paths out of the 24,978 path candidates, achieving nearly 300× reduction in the sheer number of paths.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2903013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

As technology further scales semiconductor devices, aging-induced device degradation has become one of the major threats to device reliability. In addition, aging mechanisms like the negative bias temperature instability (NBTI) is known to be sensitive to workload (i.e., signal probability) that is hard to be assumed at design phase. In this work, we analyze the workload dependence of NBTI degradation using a processor, and propose a novel technique to estimate the worst-case paths. In our approach, with careful examination, we exploit the fact that the deterministic nature of circuit structure limits the amount of NBTI degradation on different paths, and proposes a two-stage path extraction algorithm to identify the invariable critical paths in the processor. Through numerical experiment on a MIPS32 processor, we performed a detailed signal probability analysis, and successfully extracted 85 invariable critical paths out of the 24,978 path candidates, achieving nearly 300× reduction in the sheer number of paths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理器规模NBTI退化的工作负载感知最坏路径分析
随着半导体器件技术的进一步发展,老化引起的器件退化已成为器件可靠性的主要威胁之一。此外,已知负偏置温度不稳定性(NBTI)等老化机制对工作负荷(即信号概率)敏感,这在设计阶段很难假设。在此工作中,我们分析了使用处理器的NBTI退化的工作负载依赖性,并提出了一种新的估计最坏情况路径的技术。在我们的方法中,经过仔细检查,我们利用电路结构的确定性限制了NBTI在不同路径上的退化量这一事实,并提出了一种两阶段路径提取算法来识别处理器中不变的关键路径。通过MIPS32处理器上的数值实验,我们进行了详细的信号概率分析,并成功地从24,978个候选路径中提取了85个不变的关键路径,使路径的绝对数量减少了近300倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concurrent error detection for reliable SHA-3 design Task-resource co-allocation for hotspot minimization in heterogeneous many-core NoCs Multiple attempt write strategy for low energy STT-RAM An enhanced analytical electrical masking model for multiple event transients A novel on-chip impedance calibration method for LPDDR4 interface between DRAM and AP/SoC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1