Investigation of Particle Swarm Optimization as technique for reactive power dispatch in smart grids

I. Pisica, G. Taylor, Sebastian Traistaru
{"title":"Investigation of Particle Swarm Optimization as technique for reactive power dispatch in smart grids","authors":"I. Pisica, G. Taylor, Sebastian Traistaru","doi":"10.1109/UPEC.2014.6934596","DOIUrl":null,"url":null,"abstract":"This paper gives an overview of the Particle Swarm Optimization technique with the aim of investigating its applicability to minimizing losses in a power distribution system. The suitability of this method is investigated by emphasizing the impact of its intrinsic parameters on the results. The investigation employs particle swarm optimization on a test system by controlling the generator voltages, transformer taps and the reactive power in the capacitor banks for each load bus. In total it contains 33 control variables: 5 generators (not including the terminal bus), 4 transformers and 24 capacitor banks. A theoretical approach of the PSO is given in the beginning, followed by the simulation results and analyses.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper gives an overview of the Particle Swarm Optimization technique with the aim of investigating its applicability to minimizing losses in a power distribution system. The suitability of this method is investigated by emphasizing the impact of its intrinsic parameters on the results. The investigation employs particle swarm optimization on a test system by controlling the generator voltages, transformer taps and the reactive power in the capacitor banks for each load bus. In total it contains 33 control variables: 5 generators (not including the terminal bus), 4 transformers and 24 capacitor banks. A theoretical approach of the PSO is given in the beginning, followed by the simulation results and analyses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的智能电网无功调度技术研究
本文概述了粒子群优化技术,目的是研究其在配电系统中最小化损耗的适用性。着重分析了该方法的内在参数对结果的影响,探讨了该方法的适用性。通过控制发电机电压、变压器分接和各负载母线电容器组的无功功率,对测试系统进行了粒子群优化。它总共包含33个控制变量:5个发电机(不包括终端总线),4个变压器和24个电容器组。首先给出了粒子群算法的理论方法,然后给出了仿真结果和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transposing phasor equation into instantaneous values equations using Hilbert transform Optimal design of a hybrid distributed generation system Modelling of reduced GB transmission system in PSCAD/EMTDC Medium-voltage cable inductive coupling to metallic pipelines: A comprehensive study UPS system: How can future technology and topology improve the energy efficiency in data centers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1