Detectability and Identifiability Analysis of Bad Data in Current Reckoning Method

Zhang Na, Yang Gang Wang Dawe
{"title":"Detectability and Identifiability Analysis of Bad Data in Current Reckoning Method","authors":"Zhang Na, Yang Gang Wang Dawe","doi":"10.1109/ICACI.2019.8778481","DOIUrl":null,"url":null,"abstract":"In this paper, the observability analysis of the state estimation based on the current reckoning method is carried out, and the relevant conditions for achieving observability are obtained. On this basis, the detectability and identifiability of the bad data in system measurement are analyzed.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the observability analysis of the state estimation based on the current reckoning method is carried out, and the relevant conditions for achieving observability are obtained. On this basis, the detectability and identifiability of the bad data in system measurement are analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电流推算法中不良数据的可检测性和可识别性分析
本文对基于当前推算法的状态估计进行了可观测性分析,得到了实现可观测性的相关条件。在此基础上,分析了系统测量中不良数据的可检测性和可识别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis Stage Actor Tracking Method Based on Kalman Filter Parameter Identification, Verification and Simulation of the CSD Transport Process A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction A Deep Residual Networks Accelerator on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1