{"title":"COSEARCH: a co-evolutionary metaheuristic","authors":"V. Bachelet, E. Talbi","doi":"10.1109/CEC.2000.870839","DOIUrl":null,"url":null,"abstract":"In order to show that the parallel co-evolution of different heuristic methods may lead to an efficient search strategy, we have hybridized three heuristic agents of complementary behaviours: A Tabu Search is used as the main search algorithm, a Genetic Algorithm is in charge of the diversification and a Kick Operator is applied to intensify the search. The three agents run simultaneously, they communicate and cooperate via an adaptive memory which contains a history of the search already done, focusing on high quality regions of the search space. This paper presents CO-SEARCH, the co-evolving heuristic we have designed, and its application on large scale instances of the quadratic assignment problem. The evaluations have been executed on large scale network of workstations via a parallel environment which supports fault tolerance and adaptive dynamic scheduling of tasks.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In order to show that the parallel co-evolution of different heuristic methods may lead to an efficient search strategy, we have hybridized three heuristic agents of complementary behaviours: A Tabu Search is used as the main search algorithm, a Genetic Algorithm is in charge of the diversification and a Kick Operator is applied to intensify the search. The three agents run simultaneously, they communicate and cooperate via an adaptive memory which contains a history of the search already done, focusing on high quality regions of the search space. This paper presents CO-SEARCH, the co-evolving heuristic we have designed, and its application on large scale instances of the quadratic assignment problem. The evaluations have been executed on large scale network of workstations via a parallel environment which supports fault tolerance and adaptive dynamic scheduling of tasks.