Combined ultrasound echography and magnetic resonance imaging guidance for direct and indirect target tracking

B. D. Senneville, Y. Regard, C. Moonen, M. Ries
{"title":"Combined ultrasound echography and magnetic resonance imaging guidance for direct and indirect target tracking","authors":"B. D. Senneville, Y. Regard, C. Moonen, M. Ries","doi":"10.1109/ISBI.2014.6868085","DOIUrl":null,"url":null,"abstract":"Real-time motion estimation has a growing interest for the guidance of interventional procedures in mobile organs. For this purpose, combined magnetic resonance (MR) imaging and ultrasound (US) echography systems can now provide both MR- and US- images, which can be exploited simultaneously for improved target tracking. For this purpose, two tracking strategies can be investigated: While indirect tracking methods rely on a calibration obtained prior to the intervention, direct tracking methods perform the target localization directly on the continuously acquired position. The current paper describes real-time methodological developments designed for the guidance of non-invasive interventional procedures, using a combined MR/US imaging system: A GPU (Graphics Processing Unit) optimized processing pipeline is proposed for both direct and indirect approaches, in conjunction with simultaneous high-frame-rate MR and echography. Experiments on a moving ex-vivo target were performed with MR-guided HIFU (High Intensity Focused Ultrasound) during continuous ultrasound echography. Real-time US echography-based tracking during MR-guided HIFU heating was achieved with heated area dimensions similar to those obtained for a static target.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Real-time motion estimation has a growing interest for the guidance of interventional procedures in mobile organs. For this purpose, combined magnetic resonance (MR) imaging and ultrasound (US) echography systems can now provide both MR- and US- images, which can be exploited simultaneously for improved target tracking. For this purpose, two tracking strategies can be investigated: While indirect tracking methods rely on a calibration obtained prior to the intervention, direct tracking methods perform the target localization directly on the continuously acquired position. The current paper describes real-time methodological developments designed for the guidance of non-invasive interventional procedures, using a combined MR/US imaging system: A GPU (Graphics Processing Unit) optimized processing pipeline is proposed for both direct and indirect approaches, in conjunction with simultaneous high-frame-rate MR and echography. Experiments on a moving ex-vivo target were performed with MR-guided HIFU (High Intensity Focused Ultrasound) during continuous ultrasound echography. Real-time US echography-based tracking during MR-guided HIFU heating was achieved with heated area dimensions similar to those obtained for a static target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声和磁共振成像联合制导直接和间接目标跟踪
实时运动估计对运动器官介入手术的指导越来越有兴趣。为此目的,结合磁共振(MR)成像和超声(US)超声成像系统现在可以同时提供MR和US图像,这可以同时用于改进目标跟踪。为此,可以研究两种跟踪策略:间接跟踪方法依赖于干预前获得的校准,直接跟踪方法直接在连续获取的位置上进行目标定位。当前的论文描述了用于指导非侵入性介入程序的实时方法发展,使用联合MR/US成像系统:GPU(图形处理单元)优化了直接和间接方法的处理管道,结合同时高帧率MR和超声成像。在连续超声检查过程中,采用核磁共振引导的高强度聚焦超声(HIFU)对运动的离体靶标进行实验。在磁共振引导下的HIFU加热过程中,实现了基于超声的实时跟踪,加热面积尺寸与静态目标相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1