Avtar Singh, S. Chaudhury, C. Sarkar, I. Hussain, A. Ganguly
{"title":"A Multi Vt Approach for Silicon Nanotube FET with Halo Implantation for Improved DIBL","authors":"Avtar Singh, S. Chaudhury, C. Sarkar, I. Hussain, A. Ganguly","doi":"10.1109/EDKCON.2018.8770441","DOIUrl":null,"url":null,"abstract":"An effective way to get multiple threshold voltage modulation scheme in Silicon nano tube FET combining unbalanced halo doping is proposed and verified by 3D TCAD Simulator. The typical choice to accomplish multiple threshold voltages is by choosing the appropriate gate work-function for each device. But this results in higher process complexity. In this report we demonstrate the multiple Vtsolution for Si-NTFET at 14 nm technology node. Using HALO at source side, the simulated DIBL (Drain induced Barrier Lowering)characteristics shows notable improvement.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An effective way to get multiple threshold voltage modulation scheme in Silicon nano tube FET combining unbalanced halo doping is proposed and verified by 3D TCAD Simulator. The typical choice to accomplish multiple threshold voltages is by choosing the appropriate gate work-function for each device. But this results in higher process complexity. In this report we demonstrate the multiple Vtsolution for Si-NTFET at 14 nm technology node. Using HALO at source side, the simulated DIBL (Drain induced Barrier Lowering)characteristics shows notable improvement.