Semi-supervised learning of brain functional networks

Yuhui Du, J. Sui, Qingbao Yu, Hao He, V. Calhoun
{"title":"Semi-supervised learning of brain functional networks","authors":"Yuhui Du, J. Sui, Qingbao Yu, Hao He, V. Calhoun","doi":"10.1109/ISBI.2014.6867794","DOIUrl":null,"url":null,"abstract":"Identification of subject-specific brain functional networks of interest is of great importance in fMRI based brain network analysis. In this study, a novel method is proposed to identify subject-specific brain functional networks using a graph theory based semi-supervised learning technique by incorporating not only prior information of the network to be identified as similarly used in seed region based correlation analysis (SCA) but also background information, which leads to robust performance for fMRI data with low signal noise ratio (SNR). Comparison experiments on both simulated and real fMRI data demonstrate that our method is more robust and accurate for identification of known brain functional networks than SCA, blind independent component analysis (ICA), and clustering based methods including Ncut and Kmeans.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Identification of subject-specific brain functional networks of interest is of great importance in fMRI based brain network analysis. In this study, a novel method is proposed to identify subject-specific brain functional networks using a graph theory based semi-supervised learning technique by incorporating not only prior information of the network to be identified as similarly used in seed region based correlation analysis (SCA) but also background information, which leads to robust performance for fMRI data with low signal noise ratio (SNR). Comparison experiments on both simulated and real fMRI data demonstrate that our method is more robust and accurate for identification of known brain functional networks than SCA, blind independent component analysis (ICA), and clustering based methods including Ncut and Kmeans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑功能网络的半监督学习
在基于功能磁共振成像的脑网络分析中,识别感兴趣的脑功能网络具有重要意义。在本研究中,提出了一种基于图论的半监督学习技术来识别受试者特定的脑功能网络的新方法,该方法不仅结合了网络的先验信息(类似于基于种子区域的相关分析(SCA)),还结合了背景信息,从而对低信噪比(SNR)的fMRI数据具有鲁棒性。模拟和真实fMRI数据的对比实验表明,我们的方法在识别已知脑功能网络方面比SCA、盲独立分量分析(ICA)和基于Ncut和Kmeans的聚类方法更具鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1