Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for Classifying Imbalanced Data

Chaekyu Lee, Jaekwang Kim
{"title":"Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for Classifying Imbalanced Data","authors":"Chaekyu Lee, Jaekwang Kim","doi":"10.1109/ICDMW58026.2022.00033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the star topology and rejection method (STARM), a new oversampling technique that generally performs well for varying data and algorithms. STARM is a hybrid technique that combines the advantages of Polynom-fit-SMOTE, LEE, and SMOTE, all of which have yielded high performance based on different technical features, and eliminates their disadvantages. To verify that the proposed technique exhibits high performance in general situations, we conducted 28,028 experiments to compare the predictive performance of 77 oversampling techniques with four machine learning algorithms for 91 imbalanced datasets of various types. Consequently, STARM yielded the highest performance on average among the 77 techniques. In addition, it showed excellent performance even in various algorithms, various imbalanced ratios, and various data volumes.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose the star topology and rejection method (STARM), a new oversampling technique that generally performs well for varying data and algorithms. STARM is a hybrid technique that combines the advantages of Polynom-fit-SMOTE, LEE, and SMOTE, all of which have yielded high performance based on different technical features, and eliminates their disadvantages. To verify that the proposed technique exhibits high performance in general situations, we conducted 28,028 experiments to compare the predictive performance of 77 oversampling techniques with four machine learning algorithms for 91 imbalanced datasets of various types. Consequently, STARM yielded the highest performance on average among the 77 techniques. In addition, it showed excellent performance even in various algorithms, various imbalanced ratios, and various data volumes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于星型拓扑的混合过采样技术和拒绝方法对不平衡数据进行分类
在本文中,我们提出了星型拓扑和抑制方法(STARM),这是一种新的过采样技术,通常对不同的数据和算法表现良好。STARM是一种混合技术,它结合了多项式拟合SMOTE、LEE和SMOTE的优点,所有这些优点都基于不同的技术特征产生了高性能,并消除了它们的缺点。为了验证所提出的技术在一般情况下表现出高性能,我们进行了28,028个实验,以比较77种过采样技术与四种机器学习算法对91种不同类型的不平衡数据集的预测性能。因此,在77种技术中,STARM的平均性能最高。此外,即使在各种算法、各种不平衡比率、各种数据量下,它也表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1