{"title":"A Compact 60 GHz LNA with 22.7-dB Gain and 4.4-dB NF in 40nm CMOS","authors":"Jiacong Ke, Guangyin Feng, Yanjie Wang","doi":"10.1109/ICTA56932.2022.9963014","DOIUrl":null,"url":null,"abstract":"This paper presents a compact low-noise amplifier (LNA) design for 60 GHz phased-array applications. Utilizing single transformer-based 4th-order resonators for input and inter-stage matching, a compact core area of only 0.08mm2 is achieved. A unit transistor-cell layout design technique for millimeter-wave (mm-Wave) circuit design is adopted to reduce the uncertain high-frequency coupling effects, leading a peak gain of 22.7dB. A 4.4-dB noise figure (NF) and a 3-dB bandwidth from 54 to 63 GHz are achieved based on the post layout simulation results, with a total power consumption of 29.9 mW.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a compact low-noise amplifier (LNA) design for 60 GHz phased-array applications. Utilizing single transformer-based 4th-order resonators for input and inter-stage matching, a compact core area of only 0.08mm2 is achieved. A unit transistor-cell layout design technique for millimeter-wave (mm-Wave) circuit design is adopted to reduce the uncertain high-frequency coupling effects, leading a peak gain of 22.7dB. A 4.4-dB noise figure (NF) and a 3-dB bandwidth from 54 to 63 GHz are achieved based on the post layout simulation results, with a total power consumption of 29.9 mW.