{"title":"High-performance QuIDD-based simulation of quantum circuits","authors":"George F. Viamontes, I. Markov, J. Hayes","doi":"10.1109/DATE.2004.1269084","DOIUrl":null,"url":null,"abstract":"Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and vectors modeling qubit states grow exponentially with the number of qubits. It has been shown experimentally that the QuIDD (Quantum Information Decision Diagram) datastructure greatly facilitates simulations using memory and runtime that are polynomial in the number of qubits. In this paper, we present a complexity analysis which formally describes this class of matrices and vectors. We also present an improved implementation of QuIDDs which can simulate Grover's algorithm for quantum search with the asymptotic runtime complexity of an ideal quantum computer up to negligible overhead.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and vectors modeling qubit states grow exponentially with the number of qubits. It has been shown experimentally that the QuIDD (Quantum Information Decision Diagram) datastructure greatly facilitates simulations using memory and runtime that are polynomial in the number of qubits. In this paper, we present a complexity analysis which formally describes this class of matrices and vectors. We also present an improved implementation of QuIDDs which can simulate Grover's algorithm for quantum search with the asymptotic runtime complexity of an ideal quantum computer up to negligible overhead.