Thermal cycling reliability of SnAgCu solder joints in WLCSP

K. Zeng, A. Nangia
{"title":"Thermal cycling reliability of SnAgCu solder joints in WLCSP","authors":"K. Zeng, A. Nangia","doi":"10.1109/EPTC.2014.7028401","DOIUrl":null,"url":null,"abstract":"It has been widely reported in the literature that for packages that are required to pass thermal cycling test, the SnAgCu solder joints should have high Ag content. In this study, thermal cycling performance of a wafer level chip-scale package was evaluated with different combinations of high Ag solder (Sn3.9Ag0.6Cu) and low Ag solder (Sn1.2Ag0.5Cu) with thick and thin PCB. It was found that with the low Ag solder ball the package mounted on a thin PCB had better performance. Metallurgical analysis of solder joints, mechanical modeling of the package mounted on boards, and coplanarity measurement of the printed circuit boards were performed to understand the results. Because of the CTE mismatch between PCB and die, PCB warpage resulted in high tensile stress in solder joints in the central area, causing cracking of re-distribution layer Cu. The softer solder alloy Sn1.2Ag0.5Cu helped reduce the stress, leading to better performance in thermal cycling test.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

It has been widely reported in the literature that for packages that are required to pass thermal cycling test, the SnAgCu solder joints should have high Ag content. In this study, thermal cycling performance of a wafer level chip-scale package was evaluated with different combinations of high Ag solder (Sn3.9Ag0.6Cu) and low Ag solder (Sn1.2Ag0.5Cu) with thick and thin PCB. It was found that with the low Ag solder ball the package mounted on a thin PCB had better performance. Metallurgical analysis of solder joints, mechanical modeling of the package mounted on boards, and coplanarity measurement of the printed circuit boards were performed to understand the results. Because of the CTE mismatch between PCB and die, PCB warpage resulted in high tensile stress in solder joints in the central area, causing cracking of re-distribution layer Cu. The softer solder alloy Sn1.2Ag0.5Cu helped reduce the stress, leading to better performance in thermal cycling test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SnAgCu焊点热循环可靠性研究
文献中广泛报道,对于需要通过热循环测试的封装,SnAgCu焊点应具有高的Ag含量。在本研究中,采用高银焊料(Sn3.9Ag0.6Cu)和低银焊料(Sn1.2Ag0.5Cu)的不同组合,在厚和薄PCB上评估了圆片级芯片级封装的热循环性能。结果表明,采用低银焊料球的封装在薄PCB板上具有较好的性能。对焊点进行了冶金分析,对电路板上安装的封装进行了力学建模,并对印刷电路板进行了共面测量,以了解结果。由于PCB与模具之间的CTE不匹配,导致PCB翘曲导致中心区域焊点的高拉应力,导致Cu再分布层开裂。较软的钎料合金Sn1.2Ag0.5Cu有助于降低应力,从而在热循环测试中获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1