Duc-Tri Do, Minh‐Khai Nguyen, Thanh-Hai Quach, Vinh-Thanh Tran, Cong-Bang Le, Kyoung-Won Lee, G. Cho
{"title":"Space Vector Modulation Strategy for Three-Level Quasi-Switched Boost T-Type Inverter","authors":"Duc-Tri Do, Minh‐Khai Nguyen, Thanh-Hai Quach, Vinh-Thanh Tran, Cong-Bang Le, Kyoung-Won Lee, G. Cho","doi":"10.1109/SPEC.2018.8636025","DOIUrl":null,"url":null,"abstract":"In this paper, a space vector pulse width modulation (SVPWM) strategy for the three-level quasi-switched boost T-type inverter (TL-qSBI) is presented. Under the SVPWM control method, the inductor current ripple of the TL-qSBI is reduced. In the proposed SVPWM technique, the shoot-through duty cycle is maintained constant to keep the modulation index as high as possible. Then, the only control parameters of the TL-qSBI are the duty cycles of the two additional switches. By controlling the duty cycles of the two additional switches, the voltage gain of the qSBT 2 I can be improved to a value larger than that of the conventional three-level impedance source inverters. The steady-state analysis and operating principles are presented. Simulation results validate the theoretical analysis.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8636025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, a space vector pulse width modulation (SVPWM) strategy for the three-level quasi-switched boost T-type inverter (TL-qSBI) is presented. Under the SVPWM control method, the inductor current ripple of the TL-qSBI is reduced. In the proposed SVPWM technique, the shoot-through duty cycle is maintained constant to keep the modulation index as high as possible. Then, the only control parameters of the TL-qSBI are the duty cycles of the two additional switches. By controlling the duty cycles of the two additional switches, the voltage gain of the qSBT 2 I can be improved to a value larger than that of the conventional three-level impedance source inverters. The steady-state analysis and operating principles are presented. Simulation results validate the theoretical analysis.