Dynamical diffraction area applicability in case of 1D photonic crystals with sinusoidal permittivity profile

K. O. Romanenko, A. Sel'kin
{"title":"Dynamical diffraction area applicability in case of 1D photonic crystals with sinusoidal permittivity profile","authors":"K. O. Romanenko, A. Sel'kin","doi":"10.5220/0005403601180121","DOIUrl":null,"url":null,"abstract":"Bragg reflection and transmission spectra of the 1D photonic crystals characterized by a spatially sinusoidal profile of permittivity are studied as a function of the crystal-plate thickness. Applicability of the dynamical theory of diffraction in describing such spectra is considered. In the framework of the dynamical theory, we (i) calculated and analysed the reflection and transmission spectra for oblique incidence of polarized light, (ii) computed the spectra making use of the transfer matrix technique, and (iii) compared quantitatively the results of the two approaches. As a result, the analytical dynamical theory of diffraction is found to be correct in calculating the Bragg spectra in the vicinity of single photonic band-gap when the plate thickness is equal to the integer number of the spatial periods, or the permittivity is symmetric about the middle plane of the structure.","PeriodicalId":170064,"journal":{"name":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005403601180121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bragg reflection and transmission spectra of the 1D photonic crystals characterized by a spatially sinusoidal profile of permittivity are studied as a function of the crystal-plate thickness. Applicability of the dynamical theory of diffraction in describing such spectra is considered. In the framework of the dynamical theory, we (i) calculated and analysed the reflection and transmission spectra for oblique incidence of polarized light, (ii) computed the spectra making use of the transfer matrix technique, and (iii) compared quantitatively the results of the two approaches. As a result, the analytical dynamical theory of diffraction is found to be correct in calculating the Bragg spectra in the vicinity of single photonic band-gap when the plate thickness is equal to the integer number of the spatial periods, or the permittivity is symmetric about the middle plane of the structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态衍射区域适用于具有正弦介电常数分布的一维光子晶体
研究了以介电常数为空间正弦曲线的一维光子晶体的布拉格反射和透射光谱随晶片厚度的变化规律。考虑了衍射动力学理论在描述这类光谱中的适用性。在动力学理论的框架下,我们(1)计算并分析了偏振光斜入射时的反射和透射光谱,(2)利用传递矩阵技术计算了光谱,(3)定量比较了两种方法的结果。结果表明,当板厚等于空间周期的整数个数或介电常数在结构的中间平面对称时,衍射的解析动力学理论在单光子带隙附近的布拉格谱计算是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an optimized distal optic for non linear endomicroscopy Optical measurement of temperature in tissue culture surfaces under infrared laser light excitation at 800nm using a fluorescent dye A quick method to determine the impurity content in gold ornaments by LIBS technique Specific electrodynamic features of a plasma channel created in gas by powerful femtosecond UV laser pulse application to the problem of guiding and amplification of microwave radiation High-power simultaneously Q-switched and Kerr-lens mode-locked eye-safe Nd:YAP/YVO4 intracavity Raman laser based on injection locking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1