Incorporating Duration Information for Trajectory Classification

D. Patel, Chang Sheng, W. Hsu, M. Lee
{"title":"Incorporating Duration Information for Trajectory Classification","authors":"D. Patel, Chang Sheng, W. Hsu, M. Lee","doi":"10.1109/ICDE.2012.72","DOIUrl":null,"url":null,"abstract":"Trajectory classification has many useful applications. Existing works on trajectory classification do not consider the duration information of trajectory. In this paper, we extract duration-aware features from trajectories to build a classifier. Our method utilizes information theory to obtain regions where the trajectories have similar speeds and directions. Further, trajectories are summarized into a network based on the MDL principle that takes into account the duration difference among trajectories of different classes. A graph traversal is performed on this trajectory network to obtain the top-k covering path rules for each trajectory. Based on the discovered regions and top-k path rules, we build a classifier to predict the class labels of new trajectories. Experiment results on real-world datasets show that the proposed duration-aware classifier can obtain higher classification accuracy than the state-of-the-art trajectory classifier.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Trajectory classification has many useful applications. Existing works on trajectory classification do not consider the duration information of trajectory. In this paper, we extract duration-aware features from trajectories to build a classifier. Our method utilizes information theory to obtain regions where the trajectories have similar speeds and directions. Further, trajectories are summarized into a network based on the MDL principle that takes into account the duration difference among trajectories of different classes. A graph traversal is performed on this trajectory network to obtain the top-k covering path rules for each trajectory. Based on the discovered regions and top-k path rules, we build a classifier to predict the class labels of new trajectories. Experiment results on real-world datasets show that the proposed duration-aware classifier can obtain higher classification accuracy than the state-of-the-art trajectory classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合持续时间信息进行弹道分类
弹道分类有许多有用的应用。现有的弹道分类工作没有考虑弹道的持续时间信息。在本文中,我们从轨迹中提取持续时间感知特征来构建分类器。我们的方法利用信息理论来获得轨迹具有相似速度和方向的区域。此外,考虑到不同类别的轨迹之间的持续时间差异,基于MDL原则将轨迹总结成一个网络。对该轨迹网络进行图遍历,得到每条轨迹的top-k覆盖路径规则。基于发现的区域和top-k路径规则,我们建立了一个分类器来预测新轨迹的类别标签。在真实数据集上的实验结果表明,与目前最先进的轨迹分类器相比,所提出的时间感知分类器可以获得更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1