{"title":"Incorporating Duration Information for Trajectory Classification","authors":"D. Patel, Chang Sheng, W. Hsu, M. Lee","doi":"10.1109/ICDE.2012.72","DOIUrl":null,"url":null,"abstract":"Trajectory classification has many useful applications. Existing works on trajectory classification do not consider the duration information of trajectory. In this paper, we extract duration-aware features from trajectories to build a classifier. Our method utilizes information theory to obtain regions where the trajectories have similar speeds and directions. Further, trajectories are summarized into a network based on the MDL principle that takes into account the duration difference among trajectories of different classes. A graph traversal is performed on this trajectory network to obtain the top-k covering path rules for each trajectory. Based on the discovered regions and top-k path rules, we build a classifier to predict the class labels of new trajectories. Experiment results on real-world datasets show that the proposed duration-aware classifier can obtain higher classification accuracy than the state-of-the-art trajectory classifier.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Trajectory classification has many useful applications. Existing works on trajectory classification do not consider the duration information of trajectory. In this paper, we extract duration-aware features from trajectories to build a classifier. Our method utilizes information theory to obtain regions where the trajectories have similar speeds and directions. Further, trajectories are summarized into a network based on the MDL principle that takes into account the duration difference among trajectories of different classes. A graph traversal is performed on this trajectory network to obtain the top-k covering path rules for each trajectory. Based on the discovered regions and top-k path rules, we build a classifier to predict the class labels of new trajectories. Experiment results on real-world datasets show that the proposed duration-aware classifier can obtain higher classification accuracy than the state-of-the-art trajectory classifier.