Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data

Inhwan Hwang, Geonho Cha, Songhwai Oh
{"title":"Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data","authors":"Inhwan Hwang, Geonho Cha, Songhwai Oh","doi":"10.1109/MFI.2017.8170441","DOIUrl":null,"url":null,"abstract":"Human action recognition has been studied in many fields including computer vision and sensor networks using inertial sensors. However, there are limitations such as spatial constraints, occlusions in images, sensor unreliability, and the inconvenience of users. In order to solve these problems we suggest a sensor fusion method for human action recognition exploiting RGB images from a single fixed camera and a single wrist mounted inertial sensor. These two different domain information can complement each other to fill the deficiencies that exist in both image based and inertial sensor based human action recognition methods. We propose two convolutional neural network (CNN) based feature extraction networks for image and inertial sensor data and a recurrent neural network (RNN) based classification network with long short term memory (LSTM) units. Training of deep neural networks and testing are done with synchronized images and sensor data collected from five individuals. The proposed method results in better performance compared to single sensor-based methods with an accuracy of 86.9% in cross-validation. We also verify that the proposed algorithm robustly classifies the target action when there are failures in detecting body joints from images.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Human action recognition has been studied in many fields including computer vision and sensor networks using inertial sensors. However, there are limitations such as spatial constraints, occlusions in images, sensor unreliability, and the inconvenience of users. In order to solve these problems we suggest a sensor fusion method for human action recognition exploiting RGB images from a single fixed camera and a single wrist mounted inertial sensor. These two different domain information can complement each other to fill the deficiencies that exist in both image based and inertial sensor based human action recognition methods. We propose two convolutional neural network (CNN) based feature extraction networks for image and inertial sensor data and a recurrent neural network (RNN) based classification network with long short term memory (LSTM) units. Training of deep neural networks and testing are done with synchronized images and sensor data collected from five individuals. The proposed method results in better performance compared to single sensor-based methods with an accuracy of 86.9% in cross-validation. We also verify that the proposed algorithm robustly classifies the target action when there are failures in detecting body joints from images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合图像和惯性传感器数据的深度神经网络多模态人体动作识别
人体动作识别在计算机视觉、惯性传感器网络等多个领域得到了广泛的研究。但也存在空间限制、图像遮挡、传感器不可靠、用户使用不便等局限性。为了解决这些问题,我们提出了一种利用单个固定相机和单个腕式惯性传感器的RGB图像进行人体动作识别的传感器融合方法。这两种不同的领域信息可以相互补充,以弥补基于图像和惯性传感器的人体动作识别方法存在的不足。我们提出了两个基于卷积神经网络(CNN)的图像和惯性传感器数据特征提取网络,以及一个基于循环神经网络(RNN)的具有长短期记忆(LSTM)单元的分类网络。深度神经网络的训练和测试是用从五个人收集的同步图像和传感器数据完成的。与基于单传感器的方法相比,该方法在交叉验证中具有更好的性能,准确率为86.9%。我们还验证了当从图像中检测人体关节失败时,该算法对目标动作进行了鲁棒性分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep reinforcement learning algorithms for steering an underactuated ship Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations Underwater Terrain Navigation Using Standard Sea Charts and Magnetic Field Maps Musculoskeletal model of a pregnant woman considering stretched rectus abdominis and co-contraction muscle activation Compressive sensing based data collection in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1