A. A. Babenko, M. V. Ushakov, A. V. Murzin, L. Mikhailova
{"title":"Elaboration and mastering of technology of semiproduct smelting in EAF under magnesia slags","authors":"A. A. Babenko, M. V. Ushakov, A. V. Murzin, L. Mikhailova","doi":"10.32339/0135-5910-2019-8-936-943","DOIUrl":null,"url":null,"abstract":"Technology of magnesia slags forming provides increase of electric energy utilization efficiency and furnace lining resistance due to early formation of stable slag foam and decrease of aggressive slag impact on the lining. At the same time the practice of operation with magnesia slags shows, that excessive over-saturation them by magnesium oxide results in heterogenization, decrease of refining properties and deterioration of some technological, technical and economic process indices. Therefore, study and elaboration technology of rational composition magnesia slags forming by periods of a heating in EAF is an actual task. Results of numerical simulation of slag temperature and chemical composition effect on MgO saturation concentration during different melting periods in EAF presented. Besides, results of analysis of refining abilities of magnesia slags depending on MgO saturation degree also presented study of magnesia slags viscosity effect depending on MgO basicity and saturation concentration, as well as magnesia slag chemical and phase composition effect on foaming efficiency. Results of theoretical and experimental study were used as a base of elaboration rational slag composition by periods of melting in the EAF and technological techniques of their formation. A technology elaborated and implemented at PAO “Seversky pipe plant” EAF shop by leaving some amount of high-magnesia slags of the previous heat and addition in two stages high-magnesia flux of “Magma” grade during the oxidizing period. This resulted in a record resistance of the refractory EAF lining, exceeding 1900 heats within a campaign and a high level of technological, technical and economic process indices.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2019-8-936-943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Technology of magnesia slags forming provides increase of electric energy utilization efficiency and furnace lining resistance due to early formation of stable slag foam and decrease of aggressive slag impact on the lining. At the same time the practice of operation with magnesia slags shows, that excessive over-saturation them by magnesium oxide results in heterogenization, decrease of refining properties and deterioration of some technological, technical and economic process indices. Therefore, study and elaboration technology of rational composition magnesia slags forming by periods of a heating in EAF is an actual task. Results of numerical simulation of slag temperature and chemical composition effect on MgO saturation concentration during different melting periods in EAF presented. Besides, results of analysis of refining abilities of magnesia slags depending on MgO saturation degree also presented study of magnesia slags viscosity effect depending on MgO basicity and saturation concentration, as well as magnesia slag chemical and phase composition effect on foaming efficiency. Results of theoretical and experimental study were used as a base of elaboration rational slag composition by periods of melting in the EAF and technological techniques of their formation. A technology elaborated and implemented at PAO “Seversky pipe plant” EAF shop by leaving some amount of high-magnesia slags of the previous heat and addition in two stages high-magnesia flux of “Magma” grade during the oxidizing period. This resulted in a record resistance of the refractory EAF lining, exceeding 1900 heats within a campaign and a high level of technological, technical and economic process indices.