An FPGA-Based Computing Infrastructure Tailored to Efficiently Scaffold Genome Sequences

Alberto Zeni, M. Crespi, Lorenzo Di Tucci, M. Santambrogio
{"title":"An FPGA-Based Computing Infrastructure Tailored to Efficiently Scaffold Genome Sequences","authors":"Alberto Zeni, M. Crespi, Lorenzo Di Tucci, M. Santambrogio","doi":"10.1109/FCCM.2019.00074","DOIUrl":null,"url":null,"abstract":"In the current years broad access to genomic data is leading to improve the understanding and prevention of human diseases as never before. De-novo genome assembly, represents a main obstacle to perform the analysis on a large scale, as it is one of the most time-consuming phases of the genome analysis. In this paper, we present a scalable, high performance and energy efficient architecture for the alignment step of SSPACE, a state of the art tool used to perform scaffolding also in case of de-novo assembly. The final architecture is able to achieve up to 9.83x speedup in performance when compared to the software version of Bowtie, a state of the art tool used by SSPACE to perform the alignment.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the current years broad access to genomic data is leading to improve the understanding and prevention of human diseases as never before. De-novo genome assembly, represents a main obstacle to perform the analysis on a large scale, as it is one of the most time-consuming phases of the genome analysis. In this paper, we present a scalable, high performance and energy efficient architecture for the alignment step of SSPACE, a state of the art tool used to perform scaffolding also in case of de-novo assembly. The final architecture is able to achieve up to 9.83x speedup in performance when compared to the software version of Bowtie, a state of the art tool used by SSPACE to perform the alignment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于fpga的计算基础架构,可有效地支撑基因组序列
近年来,基因组数据的广泛获取正在以前所未有的方式改善对人类疾病的理解和预防。De-novo基因组组装是进行大规模基因组分析的主要障碍,因为它是基因组分析中最耗时的阶段之一。在本文中,我们提出了一种可扩展,高性能和节能的SSPACE对准步骤体系结构,这是一种用于在从头组装的情况下执行脚手架的最先进工具。与软件版本的Bowtie相比,最终的架构能够实现高达9.83倍的性能加速,Bowtie是SSPACE用于执行对齐的最先进工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1