Preliminary Experimental Investigation of Control Parameters for the Electroresistive Heating of SMA Knitted Textiles

Rachel Marbaker, B. Utter, K. Eschen, J. Abel
{"title":"Preliminary Experimental Investigation of Control Parameters for the Electroresistive Heating of SMA Knitted Textiles","authors":"Rachel Marbaker, B. Utter, K. Eschen, J. Abel","doi":"10.1115/smasis2019-5666","DOIUrl":null,"url":null,"abstract":"\n Knitted textiles manufactured from shape memory alloy (SMA) monofilaments possess advanced capabilities for distributed and complex actuation and are suited for a range of emerging needs in aerospace, biomedical, and robotics applications. In general, high currents for short periods of time provide sufficient electroresistive (Joule) heat to cause SMA wires to transform to austenite. However, SMA knitted textiles are difficult to electroresistively heat because the interlocking knit structure short-circuits the flow of current, causing localized overheating and isolating the transformation of the material along the current path. One approach for heating SMA knitted textiles is to drive pulses of high current between pairs of electrodes positioned across horizontal courses (rows) of knitted loops. This research presents a preliminary experimental investigation of the effects of factors related to electroresistive heating for SMA knitted textiles. A design of experiments analysis with two levels of four factors was conducted using a 24–1 fractional factorial design. The factors included the voltage of the power supply connected to the current amplifiers; a geometric factor defining the horizontal spacing of the electrodes attached to the knit sample; and two waveform factors: On Cycles and Off/On Cycles, which defined the length of time each current amplifier was enabled and disabled. Actuation performance was quantified by the actuation displacement and actuation force of the knit sample. Preliminary results suggest that voltage is the most influential factor, but also indicate that interactions between the geometric and waveform factors have significant effects on the heating and actuation performance. The characterization of these factor interactions has the potential to inform optimal electroresistive heating approaches for SMA knitted textiles, enabling integration into applications such as wearable technologies where convective heating is not practical.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knitted textiles manufactured from shape memory alloy (SMA) monofilaments possess advanced capabilities for distributed and complex actuation and are suited for a range of emerging needs in aerospace, biomedical, and robotics applications. In general, high currents for short periods of time provide sufficient electroresistive (Joule) heat to cause SMA wires to transform to austenite. However, SMA knitted textiles are difficult to electroresistively heat because the interlocking knit structure short-circuits the flow of current, causing localized overheating and isolating the transformation of the material along the current path. One approach for heating SMA knitted textiles is to drive pulses of high current between pairs of electrodes positioned across horizontal courses (rows) of knitted loops. This research presents a preliminary experimental investigation of the effects of factors related to electroresistive heating for SMA knitted textiles. A design of experiments analysis with two levels of four factors was conducted using a 24–1 fractional factorial design. The factors included the voltage of the power supply connected to the current amplifiers; a geometric factor defining the horizontal spacing of the electrodes attached to the knit sample; and two waveform factors: On Cycles and Off/On Cycles, which defined the length of time each current amplifier was enabled and disabled. Actuation performance was quantified by the actuation displacement and actuation force of the knit sample. Preliminary results suggest that voltage is the most influential factor, but also indicate that interactions between the geometric and waveform factors have significant effects on the heating and actuation performance. The characterization of these factor interactions has the potential to inform optimal electroresistive heating approaches for SMA knitted textiles, enabling integration into applications such as wearable technologies where convective heating is not practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMA针织物电阻加热控制参数的初步实验研究
由形状记忆合金(SMA)单丝制造的针织纺织品具有先进的分布式和复杂驱动能力,适用于航空航天,生物医学和机器人应用中的一系列新兴需求。一般来说,短时间的高电流提供足够的电阻(焦耳)热,使SMA丝转变为奥氏体。然而,SMA针织物很难电阻加热,因为联锁的针织结构使电流短路,导致局部过热并隔离材料沿着电流路径的转变。加热SMA针织物的一种方法是驱动位于针织物环的水平路线(行)上的电极对之间的大电流脉冲。本研究对SMA针织物电阻加热相关因素的影响进行了初步的实验研究。采用24-1分数因子设计,进行两水平四因子试验分析设计。这些因素包括连接到电流放大器的电源电压;定义附着在编织样品上的电极的水平间距的几何因子;和两个波形因素:开周期和关/开周期,它定义了每个电流放大器被启用和禁用的时间长度。通过织物试样的驱动位移和驱动力来量化驱动性能。初步结果表明,电压是影响最大的因素,但几何和波形因素之间的相互作用对加热和驱动性能有显著影响。这些因素相互作用的表征有可能为SMA针织纺织品的最佳电阻加热方法提供信息,使其能够集成到诸如对流加热不可用的可穿戴技术等应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1