NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization

V. Stanovov, S. Akhmedova, E. Semenkin
{"title":"NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization","authors":"V. Stanovov, S. Akhmedova, E. Semenkin","doi":"10.1109/CEC55065.2022.9870295","DOIUrl":null,"url":null,"abstract":"In this paper the adaptive differential evolution algorithm is presented, which includes a set of concepts, such as linear bias change in parameter adaptation, repetitive generation of points for bound constraint handling, as well as non-linear population size reduction and selective pressure. The proposed algorithm is used to solve the problems of the CEC 2022 Bound Constrained Single Objective Numerical Optimization bench-mark problems. The computational experiments and analysis of the results demonstrate that the NL-SHADE-LBC algorithm presented in this study is able to demonstrate high efficiency in solving complex optimization problems compared to the winners of the previous years' competitions.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper the adaptive differential evolution algorithm is presented, which includes a set of concepts, such as linear bias change in parameter adaptation, repetitive generation of points for bound constraint handling, as well as non-linear population size reduction and selective pressure. The proposed algorithm is used to solve the problems of the CEC 2022 Bound Constrained Single Objective Numerical Optimization bench-mark problems. The computational experiments and analysis of the results demonstrate that the NL-SHADE-LBC algorithm presented in this study is able to demonstrate high efficiency in solving complex optimization problems compared to the winners of the previous years' competitions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性参数自适应偏差变化的NL-SHADE-LBC算法在CEC 2022数值优化中的应用
本文提出了一种自适应差分进化算法,该算法包括参数自适应中的线性偏置变化、边界约束处理中的点重复生成、非线性种群大小缩减和选择压力等概念。将该算法应用于CEC 2022约束单目标数值优化基准问题的求解。计算实验和结果分析表明,与前几年的优胜者相比,本文提出的NL-SHADE-LBC算法在解决复杂优化问题方面具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1