{"title":"Discrete-Time Equivalent Homogeneous Differentiators","authors":"Stefan Koch, M. Reichhartinger","doi":"10.1109/VSS.2018.8460284","DOIUrl":null,"url":null,"abstract":"This paper proposes an entirely new discrete-time realization of an arbitrary order robust exact differentiator. Its construction relies on the redesign of the differentiator in the discrete-time domain by means of a non-linear eigenvalue placement. The resulting algorithm is consistent with the continuous-time algorithm and preserves the best possible asymptotic accuracies known from the continuous-time differentiator. In contrast to the existing discretization schemes, the proposed schemes are exact in the sense that in the unperturbed case the differentiators ensure vanishing estimation errors. Limit cycles typically present in the error state variables enforced by the forward Euler discretized algorithm are avoided and the precision is insensitive to an overestimation of the gains.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper proposes an entirely new discrete-time realization of an arbitrary order robust exact differentiator. Its construction relies on the redesign of the differentiator in the discrete-time domain by means of a non-linear eigenvalue placement. The resulting algorithm is consistent with the continuous-time algorithm and preserves the best possible asymptotic accuracies known from the continuous-time differentiator. In contrast to the existing discretization schemes, the proposed schemes are exact in the sense that in the unperturbed case the differentiators ensure vanishing estimation errors. Limit cycles typically present in the error state variables enforced by the forward Euler discretized algorithm are avoided and the precision is insensitive to an overestimation of the gains.