{"title":"Organic photovoltaic devices with concurrent solar energy harvesting and charge storage capability","authors":"A. Takshi, Tete Tevi, F. Rahimi","doi":"10.1117/12.2187671","DOIUrl":null,"url":null,"abstract":"Due to large variation of the solar energy availability in a day, energy storage is required in many applications when solar cells are used. However, application of external energy storage devices, such as batteries and supercapacitors, increases the cost of solar energy systems and requires additional charging circuitry. This combination is bulky and relatively expensive, which is not ideal for many applications. In this work, a novel idea is presented for making electrochemical devices with dual properties of solar energy harvesting and internal charge storage. The device is essentially a supercapacitor with a photoactive electrode. Energy harvesting occurs through light absorption at one of the electrodes made of a composite of a conducting polymer (i.e. PEDOT:PSS) and a Porphyrin dye. The energy storage takes place in the both photoactive and counter electrode (CE). We have studied the effect of the CE material on the device characteristics. Using Y-Carbon (a commercial available electrode), an open circuit voltage of 0.49 V was achieved in light across the cell with ~1 mF capacitance. The other two choices for CE were activated carbon and carbon nanotube based electrodes. The cyclic voltammetry and impedance spectroscopy demonstrated that the Y Carbon electrode was a better match.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Due to large variation of the solar energy availability in a day, energy storage is required in many applications when solar cells are used. However, application of external energy storage devices, such as batteries and supercapacitors, increases the cost of solar energy systems and requires additional charging circuitry. This combination is bulky and relatively expensive, which is not ideal for many applications. In this work, a novel idea is presented for making electrochemical devices with dual properties of solar energy harvesting and internal charge storage. The device is essentially a supercapacitor with a photoactive electrode. Energy harvesting occurs through light absorption at one of the electrodes made of a composite of a conducting polymer (i.e. PEDOT:PSS) and a Porphyrin dye. The energy storage takes place in the both photoactive and counter electrode (CE). We have studied the effect of the CE material on the device characteristics. Using Y-Carbon (a commercial available electrode), an open circuit voltage of 0.49 V was achieved in light across the cell with ~1 mF capacitance. The other two choices for CE were activated carbon and carbon nanotube based electrodes. The cyclic voltammetry and impedance spectroscopy demonstrated that the Y Carbon electrode was a better match.