Revisiting Empirical Bayes Methods and Applications to Special Types of Data

XiuWen Duan
{"title":"Revisiting Empirical Bayes Methods and Applications to Special Types of Data","authors":"XiuWen Duan","doi":"10.20381/RUOR-26562","DOIUrl":null,"url":null,"abstract":"Empirical Bayes methods have been around for a long time and have a wide range of applications. These methods provide a way in which historical data can be aggregated to provide estimates of the posterior mean. This thesis revisits some of the empirical Bayesian methods and develops new applications. We first look at a linear empirical Bayes estimator and apply it on ranking and symbolic data. Next, we consider Tweedie's formula and show how it can be applied to analyze a microarray dataset. The application of the formula is simplified with the Pearson system of distributions. Saddlepoint approximations enable us to generalize several results in this direction. The results show that the proposed methods perform well in applications to real data sets.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20381/RUOR-26562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Empirical Bayes methods have been around for a long time and have a wide range of applications. These methods provide a way in which historical data can be aggregated to provide estimates of the posterior mean. This thesis revisits some of the empirical Bayesian methods and develops new applications. We first look at a linear empirical Bayes estimator and apply it on ranking and symbolic data. Next, we consider Tweedie's formula and show how it can be applied to analyze a microarray dataset. The application of the formula is simplified with the Pearson system of distributions. Saddlepoint approximations enable us to generalize several results in this direction. The results show that the proposed methods perform well in applications to real data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回顾经验贝叶斯方法及其在特殊类型数据中的应用
经验贝叶斯方法已经存在了很长时间,并具有广泛的应用。这些方法提供了一种方法,可以将历史数据汇总起来,以提供后验均值的估计。本文回顾了一些经验贝叶斯方法,并开发了新的应用。我们首先看一个线性经验贝叶斯估计器,并将其应用于排名和符号数据。接下来,我们考虑Tweedie的公式,并展示如何将其应用于分析微阵列数据集。用皮尔逊分布系统简化了公式的应用。鞍点近似使我们能够在这个方向上推广几个结果。结果表明,该方法在实际数据集上的应用效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1