A Case Study on Periodic Spatio- Temporal Hotspot Detection in Azure Traffic Data

Venkata M. V. Gunturi, Rakesh Rajeev, Vipul Bondre, Aaditya Barnwal, Samir Jain, Ashank Anshuman, Manish Gupta
{"title":"A Case Study on Periodic Spatio- Temporal Hotspot Detection in Azure Traffic Data","authors":"Venkata M. V. Gunturi, Rakesh Rajeev, Vipul Bondre, Aaditya Barnwal, Samir Jain, Ashank Anshuman, Manish Gupta","doi":"10.1109/ICDMW58026.2022.00135","DOIUrl":null,"url":null,"abstract":"Given a spatio-temporal event framework E and a collection of time-stamped events A (over E), the goal of the periodic spatio-temporal hotspot detection (PST-Hotspot) problem is to determine spatial regions which show high “intensity” of events at certain periodic intervals. The output of the PST-Hotspot detection problem consists of the following: (a) a col-lection of spatial regions (which show high intensity of events) and, (b) their respective time intervals of high activity and periodicity values (e.g., daily, weekday-only, etc). PST-Hotspot detection poses significant challenge for designing a suitable interest measure. The aim over here is to design a mathematical representation of a PST-Hotspot such that it can differentiate interesting periodic patterns from trivial persistent patterns in the dataset. The current state of the art in the area of spatial and spatio-temporal hotspot detection focus on non-periodic patterns. In contrast, our proposed approach is able to determine periodic hotspots. We experimentally evaluated our proposed algorithm using real Azure traffic dataset from the Indian region.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a spatio-temporal event framework E and a collection of time-stamped events A (over E), the goal of the periodic spatio-temporal hotspot detection (PST-Hotspot) problem is to determine spatial regions which show high “intensity” of events at certain periodic intervals. The output of the PST-Hotspot detection problem consists of the following: (a) a col-lection of spatial regions (which show high intensity of events) and, (b) their respective time intervals of high activity and periodicity values (e.g., daily, weekday-only, etc). PST-Hotspot detection poses significant challenge for designing a suitable interest measure. The aim over here is to design a mathematical representation of a PST-Hotspot such that it can differentiate interesting periodic patterns from trivial persistent patterns in the dataset. The current state of the art in the area of spatial and spatio-temporal hotspot detection focus on non-periodic patterns. In contrast, our proposed approach is able to determine periodic hotspots. We experimentally evaluated our proposed algorithm using real Azure traffic dataset from the Indian region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Azure交通数据的周期性时空热点检测实例研究
给定一个时空事件框架E和一组时间戳事件a(在E上),周期时空热点检测(PST-Hotspot)问题的目标是确定在一定的周期间隔内显示出高“强度”事件的空间区域。PST-Hotspot检测问题的输出包括以下内容:(a)空间区域的集合(显示事件的高强度)和(b)它们各自的高活动和周期性值的时间间隔(例如,每天,仅工作日等)。pst -热点检测对设计合适的兴趣测量提出了重大挑战。这里的目标是设计一个PST-Hotspot的数学表示,这样它就可以区分数据集中有趣的周期性模式和琐碎的持久模式。目前在空间和时空热点检测领域的研究主要集中在非周期模式。相比之下,我们提出的方法能够确定周期性热点。我们使用来自印度地区的真实Azure交通数据集对我们提出的算法进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1