{"title":"Small Segment Emphasized Performance Evaluation Metric for Medical Images","authors":"R. Ammu, N. Sinha","doi":"10.1109/SPCOM50965.2020.9179617","DOIUrl":null,"url":null,"abstract":"Automatic image segmentation and quantification are critical steps in medical image analysis. The main challenges in medical image segmentation are due to the imbalance in data distribution and spatial variations of ROI. The ideal segmentation should extract all kinds of segments irrespective of size, shape and position. Commonly used metrics such as accuracy, IOU, Dice similarity coefficient consider all the detected pixels in a similar way. However, the detection of smaller segments is critical in medical analysis since it helps in early treatment of the disease and are also easier to miss. Hence, segmentation evaluation must accord larger weighting to pixels in smaller segments compared to the bigger ones. We propose a novel evaluation metric for segmentation performance, emphasizing smaller segments, by assigning a higher weightage to those pixels. Weighted false positives are also considered in deriving the new metric named, “SSEGEP” (Smatt SEGment Emphasized Performance evaluation metric), (range: 0 (Bad) to 1 (Good)). The proposed approach has been applied to two different publicly available real medical data sets of CT modality consisting of scans of the liver and pancreas of 131 and 107 subjects respectively and the results have been compared with existing evaluation metrics. Statistical significance testing is performed to quantity the relevance of the proposed approach. In comparison to Dice similarity coefficient, SSEGEP resulted in a promising p-value of the order 10-18 for hepatic tumor. The proposed metric is found to perform better for the images having multiple segments for a single label and where the regions of interest are not localized.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Automatic image segmentation and quantification are critical steps in medical image analysis. The main challenges in medical image segmentation are due to the imbalance in data distribution and spatial variations of ROI. The ideal segmentation should extract all kinds of segments irrespective of size, shape and position. Commonly used metrics such as accuracy, IOU, Dice similarity coefficient consider all the detected pixels in a similar way. However, the detection of smaller segments is critical in medical analysis since it helps in early treatment of the disease and are also easier to miss. Hence, segmentation evaluation must accord larger weighting to pixels in smaller segments compared to the bigger ones. We propose a novel evaluation metric for segmentation performance, emphasizing smaller segments, by assigning a higher weightage to those pixels. Weighted false positives are also considered in deriving the new metric named, “SSEGEP” (Smatt SEGment Emphasized Performance evaluation metric), (range: 0 (Bad) to 1 (Good)). The proposed approach has been applied to two different publicly available real medical data sets of CT modality consisting of scans of the liver and pancreas of 131 and 107 subjects respectively and the results have been compared with existing evaluation metrics. Statistical significance testing is performed to quantity the relevance of the proposed approach. In comparison to Dice similarity coefficient, SSEGEP resulted in a promising p-value of the order 10-18 for hepatic tumor. The proposed metric is found to perform better for the images having multiple segments for a single label and where the regions of interest are not localized.