Water turbidity estimation in water sampled images

I. Montassar, A. Benazza-Benyahia
{"title":"Water turbidity estimation in water sampled images","authors":"I. Montassar, A. Benazza-Benyahia","doi":"10.1109/ATSIP49331.2020.9231862","DOIUrl":null,"url":null,"abstract":"This paper tackles the problem of estimating water turbidity by analyzing images. This computer-vision solution avoids to resort to use specific laboratory instruments and, hence facilitates the water characterization in situ. Our contribution consists in designing a whole image processing chain composed of pre-processing, segmentation, feature extraction and classification modules. The second originality of our work relies on comparing two dual approaches for the segmentation and feature extraction: handcrafted and deep neural network based approaches. Finally, the lack of a publicly available dataset has motivated the building of an appropriate dataset. Experimental results indicate satisfactory performances of the proposed approaches.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper tackles the problem of estimating water turbidity by analyzing images. This computer-vision solution avoids to resort to use specific laboratory instruments and, hence facilitates the water characterization in situ. Our contribution consists in designing a whole image processing chain composed of pre-processing, segmentation, feature extraction and classification modules. The second originality of our work relies on comparing two dual approaches for the segmentation and feature extraction: handcrafted and deep neural network based approaches. Finally, the lack of a publicly available dataset has motivated the building of an appropriate dataset. Experimental results indicate satisfactory performances of the proposed approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水采样图像中的水浊度估计
本文研究了通过图像分析来估计水体浊度的问题。这种计算机视觉解决方案避免了使用特定的实验室仪器,从而方便了水的原位表征。我们的贡献在于设计了一个由预处理、分割、特征提取和分类模块组成的完整的图像处理链。我们工作的第二个独创性依赖于比较两种用于分割和特征提取的双重方法:手工制作和基于深度神经网络的方法。最后,缺乏公开可用的数据集促使人们建立适当的数据集。实验结果表明,所提方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1