Automatically Inferring the Document Class of a Scientific Article

Antoine Gauquier, P. Senellart
{"title":"Automatically Inferring the Document Class of a Scientific Article","authors":"Antoine Gauquier, P. Senellart","doi":"10.1145/3573128.3604894","DOIUrl":null,"url":null,"abstract":"We consider the problem of automatically inferring the (LATEX) document class used to write a scientific article from its PDF representation. Applications include improving the performance of information extraction techniques that rely on the style used in each document class, or determining the publisher of a given scientific article. We introduce two approaches: a simple classifier based on hand-coded document style features, as well as a CNN-based classifier taking as input the bitmap representation of the first page of the PDF article. We experiment on a dataset of around 100k articles from arXiv, where labels come from the source LATEX document associated to each article. Results show the CNN approach significantly outperforms that based on simple document style features, reaching over 90% average F1-score on a task to distinguish among several dozens of the most common document classes.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3604894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of automatically inferring the (LATEX) document class used to write a scientific article from its PDF representation. Applications include improving the performance of information extraction techniques that rely on the style used in each document class, or determining the publisher of a given scientific article. We introduce two approaches: a simple classifier based on hand-coded document style features, as well as a CNN-based classifier taking as input the bitmap representation of the first page of the PDF article. We experiment on a dataset of around 100k articles from arXiv, where labels come from the source LATEX document associated to each article. Results show the CNN approach significantly outperforms that based on simple document style features, reaching over 90% average F1-score on a task to distinguish among several dozens of the most common document classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动推断科学论文的文献类别
我们考虑从PDF表示中自动推断用于编写科学文章的(LATEX)文档类的问题。应用程序包括改进依赖于每个文档类中使用的样式的信息提取技术的性能,或者确定给定科学文章的发布者。我们介绍了两种方法:一种是基于手工编码文档样式特征的简单分类器,另一种是基于cnn的分类器,它将PDF文章的第一页的位图表示作为输入。我们对来自arXiv的大约10万篇文章的数据集进行了实验,其中标签来自与每篇文章相关的源LATEX文档。结果表明,CNN方法明显优于基于简单文档样式特征的方法,在区分几十种最常见文档类别的任务中达到90%以上的平均f1分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OntG-Bart: Ontology-Infused Clinical Abstractive Summarization Deep-learning for dysgraphia detection in children handwritings Addressing the gap between current language models and key-term-based clustering YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition Automatically Labeling Cyber Threat Intelligence reports using Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1