A. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods
{"title":"Micromachined accelerometer based on convection heat transfer","authors":"A. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods","doi":"10.1109/MEMSYS.1998.659830","DOIUrl":null,"url":null,"abstract":"A micromachined thermal accelerometer that is simple, reliable, and inexpensive to make has been developed at Simon Fraser University. The operating principle of this accelerometer is based on the free-convection heat transfer of a small hot air bubble in a sealed chamber. An experimental device that requires only four masking steps to fabricate has been built. This device has demonstrated a 0.6 milli-g sensitivity that can theoretically be extended to sub-micro-g level: A 2-axis accelerometer based on the same operating principle has also been fabricated and tested.","PeriodicalId":340972,"journal":{"name":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"128","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1998.659830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 128
Abstract
A micromachined thermal accelerometer that is simple, reliable, and inexpensive to make has been developed at Simon Fraser University. The operating principle of this accelerometer is based on the free-convection heat transfer of a small hot air bubble in a sealed chamber. An experimental device that requires only four masking steps to fabricate has been built. This device has demonstrated a 0.6 milli-g sensitivity that can theoretically be extended to sub-micro-g level: A 2-axis accelerometer based on the same operating principle has also been fabricated and tested.