Frontal object perception using radar and mono-vision

R. García, J. Burlet, Trung-Dung Vu, O. Aycard
{"title":"Frontal object perception using radar and mono-vision","authors":"R. García, J. Burlet, Trung-Dung Vu, O. Aycard","doi":"10.1109/IVS.2012.6232307","DOIUrl":null,"url":null,"abstract":"In this paper, we detail a complete software architecture of a key task that an intelligent vehicle has to deal with: frontal object perception. This task is solved by processing raw data of a radar and a mono-camera to detect and track moving objects. Data sets obtained from highways, country roads and urban areas were used to test the proposed method. Several experiments were conducted to show that the proposed method obtains a better environment representation, i.e., reduces the false alarms and missed detections from individual sensor evidence.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

In this paper, we detail a complete software architecture of a key task that an intelligent vehicle has to deal with: frontal object perception. This task is solved by processing raw data of a radar and a mono-camera to detect and track moving objects. Data sets obtained from highways, country roads and urban areas were used to test the proposed method. Several experiments were conducted to show that the proposed method obtains a better environment representation, i.e., reduces the false alarms and missed detections from individual sensor evidence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用雷达和单视觉的正面物体感知
在本文中,我们详细介绍了智能车辆必须处理的关键任务:正面物体感知的完整软件架构。该任务通过处理雷达和单摄像机的原始数据来检测和跟踪运动物体。从高速公路、乡村道路和城市地区获得的数据集用于测试所提出的方法。实验结果表明,该方法具有较好的环境表征效果,减少了单个传感器证据的虚警和漏检。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal experts' knowledge selection for intelligent driving risk detection systems Drivable space characterization using automotive lidar and georeferenced map information Manual convoying of automated urban vehicles relying on monocular vision Probabilistic trajectory prediction with Gaussian mixture models Field of safe travel: Using location and motion information to increase driver acceptance of pedestrian alerts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1