{"title":"An Event Based Gesture Recognition System Using a Liquid State Machine Accelerator","authors":"Jing Zhu, Lei Wang, Xun Xiao, Zhijie Yang, Ziyang Kang, Shiming Li, LingHui Peng","doi":"10.1145/3526241.3530357","DOIUrl":null,"url":null,"abstract":"In this paper, we design a spiking neural network (SNN) accelerator based on the Liquid State Machine (LSM) which is more lightweight and bionic. In this accelerator, 512 leaky integrate-and-fire (LIF) neurons with configurable biological parameters are integrated. For the sparsity of computation and memory of the LSM, we use zero-skipping and weight compression to maximize the performance. The quantized 4-bit model deployed on the accelerator can achieve a classification accuracy of 97.42% on the DVS128 gesture dataset. We implement the accelerator on FPGA. Results indicate that its end-to-end average inference latency is 3.97 ms, which is 26 times better than the gesture recognition system based on TrueNorth.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we design a spiking neural network (SNN) accelerator based on the Liquid State Machine (LSM) which is more lightweight and bionic. In this accelerator, 512 leaky integrate-and-fire (LIF) neurons with configurable biological parameters are integrated. For the sparsity of computation and memory of the LSM, we use zero-skipping and weight compression to maximize the performance. The quantized 4-bit model deployed on the accelerator can achieve a classification accuracy of 97.42% on the DVS128 gesture dataset. We implement the accelerator on FPGA. Results indicate that its end-to-end average inference latency is 3.97 ms, which is 26 times better than the gesture recognition system based on TrueNorth.