{"title":"Multiresolution tetrahedral meshes: an analysis and a comparison","authors":"E. Danovaro, L. Floriani, M. Lee, H. Samet","doi":"10.1109/SMI.2002.1003532","DOIUrl":null,"url":null,"abstract":"We deal with the problem of analyzing and visualizing large-size volume data sets. To this aim, we consider multiresolution representations based on a decomposition of the field domain into tetrahedral cells. We compare two types of multiresolution representations that differ on the rule applied to refine an initial coarse mesh: one is based on tetrahedron bisection, and one based on vertex split. The two representations can be viewed as instances of a common multiresolution model, that we call a multiresolution mesh. Encoding data structures for the two representations are briefly described. An experimental comparison on structured volume data sets is presented.","PeriodicalId":267347,"journal":{"name":"Proceedings SMI. Shape Modeling International 2002","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SMI. Shape Modeling International 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2002.1003532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We deal with the problem of analyzing and visualizing large-size volume data sets. To this aim, we consider multiresolution representations based on a decomposition of the field domain into tetrahedral cells. We compare two types of multiresolution representations that differ on the rule applied to refine an initial coarse mesh: one is based on tetrahedron bisection, and one based on vertex split. The two representations can be viewed as instances of a common multiresolution model, that we call a multiresolution mesh. Encoding data structures for the two representations are briefly described. An experimental comparison on structured volume data sets is presented.