Non-Linear Factor Recovery for Visual-Inertial SLAM

Liming Zhao, Dazhou Long, Yi Zhang, Xiaolin Hu, Bin Xing
{"title":"Non-Linear Factor Recovery for Visual-Inertial SLAM","authors":"Liming Zhao, Dazhou Long, Yi Zhang, Xiaolin Hu, Bin Xing","doi":"10.1109/ICDSBA51020.2020.00067","DOIUrl":null,"url":null,"abstract":"This paper proposes to use nonlinear factors to recover odometry information and use it in the optimization of global consistent map construction. In the front-end, the pixel matching is carried out by the direct method assisted with IMU information. Then the reprojection error and IMU error are minimized to obtain the initial pose estimation of robot. In the back-end, we use a fix-size optimization window to optimize mapping. When new frames are added, we marginalize the old state. We use a set of nonlinear factors to approximate the marginal distribution, and combine it with loop-closing constraints to construct a globally consistent map. Finally, the performance of the system is verified on the open dataset EuRoC, and conduct experiments in a real environment. The results show that the method improves the accuracy and robustness of mapping.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes to use nonlinear factors to recover odometry information and use it in the optimization of global consistent map construction. In the front-end, the pixel matching is carried out by the direct method assisted with IMU information. Then the reprojection error and IMU error are minimized to obtain the initial pose estimation of robot. In the back-end, we use a fix-size optimization window to optimize mapping. When new frames are added, we marginalize the old state. We use a set of nonlinear factors to approximate the marginal distribution, and combine it with loop-closing constraints to construct a globally consistent map. Finally, the performance of the system is verified on the open dataset EuRoC, and conduct experiments in a real environment. The results show that the method improves the accuracy and robustness of mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉惯性SLAM的非线性因子恢复
本文提出利用非线性因子恢复测程信息,并将其用于全局一致性地图构建的优化。在前端,利用IMU信息辅助的直接法进行像素匹配。然后最小化重投影误差和IMU误差,得到机器人的初始姿态估计。在后端,我们使用一个固定大小的优化窗口来优化映射。当添加新帧时,我们将旧状态边缘化。我们使用一组非线性因子来近似边缘分布,并将其与闭环约束相结合来构造一个全局一致的映射。最后,在开放数据集EuRoC上验证了系统的性能,并在真实环境中进行了实验。结果表明,该方法提高了映射的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Driving Engine of Quantitative Trading Strategy Based on Event Processing A Composite 3D-2D Visual Surface Defects Inspection Method for Steel Bar Intelligent Manufacturing Analysis of the Synergetic Development Degree of the Digital Economy and Green Innovation Research on Heterogenous Fleet Dynamic Vehicle Rounting Problem Based on Memetic Algorithm Research on Loading and Unloading Path Optimization for AGV at Automatic Container Terminal Based on Improved Particle Swarm Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1