Research on CPI Prediction Based on Space-Time Model

Songyan Ji, Jian Dong, Ye Wang, Yanxin Liu
{"title":"Research on CPI Prediction Based on Space-Time Model","authors":"Songyan Ji, Jian Dong, Ye Wang, Yanxin Liu","doi":"10.1109/DSA.2019.00058","DOIUrl":null,"url":null,"abstract":"Consumer price index (CPI) prediction is an effective approach to measure inflation and provide a reference to formulate economic development strategy. The Autoregressive Integrated Moving Average (ARIMA) model is a classic model to predict CPI. However, a main drawback of ARIMA model is that it only utilizes the time effect while ignoring inter-regional economic interaction which is another significant effect on CPI. Aiming at this, the Generalized Space Time Autoregressive Integrated (GSTARI) model is proposed. In this paper, we verify and compare the prediction accuracy of both GSTARI model and classic ARIMA model with the CPI data of 4 main cities (Dalian, Shenyang, Changchun and Harbin) in China. Our experiments show that for most of cities, GSTARI model have 7%-38% higher prediction accuracy than ARIMA model.","PeriodicalId":342719,"journal":{"name":"2019 6th International Conference on Dependable Systems and Their Applications (DSA)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Dependable Systems and Their Applications (DSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSA.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consumer price index (CPI) prediction is an effective approach to measure inflation and provide a reference to formulate economic development strategy. The Autoregressive Integrated Moving Average (ARIMA) model is a classic model to predict CPI. However, a main drawback of ARIMA model is that it only utilizes the time effect while ignoring inter-regional economic interaction which is another significant effect on CPI. Aiming at this, the Generalized Space Time Autoregressive Integrated (GSTARI) model is proposed. In this paper, we verify and compare the prediction accuracy of both GSTARI model and classic ARIMA model with the CPI data of 4 main cities (Dalian, Shenyang, Changchun and Harbin) in China. Our experiments show that for most of cities, GSTARI model have 7%-38% higher prediction accuracy than ARIMA model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空模型的CPI预测研究
居民消费价格指数(CPI)预测是衡量通货膨胀的有效手段,为制定经济发展战略提供参考。自回归综合移动平均(ARIMA)模型是预测CPI的经典模型。然而,ARIMA模型的一个主要缺点是它只利用了时间效应,而忽略了区域间的经济相互作用,这是对CPI的另一个重要影响。针对这一点,提出了广义时空自回归积分(GSTARI)模型。本文利用中国4个主要城市(大连、沈阳、长春和哈尔滨)的CPI数据,对GSTARI模型和经典ARIMA模型的预测精度进行了验证和比较。实验结果表明,对于大多数城市,GSTARI模型的预测精度比ARIMA模型高7% ~ 38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rational Design of the Appearance of Complex Industrial Products Based on Visual Communication Research on Anti-Noise Performance of New Chaos Criterion Research on Railway Intelligent Operation and Maintenance and Its System Architecture Research on Industrial Software Testing Knowledge Database Based on Ontology Research on Design and Verification of Sobel Image Edge Detection Based on High Level Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1