{"title":"Searching for Effective Neural Network Architectures for Heart Murmur Detection from Phonocardiogram","authors":"Hao Wen, Ji-Su Kang","doi":"10.22489/CinC.2022.130","DOIUrl":null,"url":null,"abstract":"Aim: The George B. Moody PhysioNet Challenge 2022 raised problems of heart murmur detection and related abnormal cardiac function identification from phonocardiograms (PCGs). This work describes the novel approaches developed by our team, Revenger, to solve these problems. Methods: PCGs were resampled to 1000 $Hz$, then filtered with a Butterworth band-pass filter of order 3, cut-off frequencies 25 - 400 $H{z}$, and z-score normalized. $We$ used the multi-task learning $(MTL)$ method via hard parameter sharing to train one neural network (NN) model for all the Challenge tasks. We performed neural architecture searching among a set of network backbones, including multi-branch convolutional neural networks (CNNs), SE-ResNets, TResNets, simplified $wav2vec2$, etc. Based on a stratified splitting of the subjects, 20% of the public data was left out as a validation set for model selection. The AdamW optimizer was adopted, along with the OneCycle scheduler, to optimize the model weights. Results: Our murmur detection classifier received a weighted accuracy score of 0.736 (ranked 14th out of 40 teams) and a Challenge cost score of 12944 (ranked 19th out of 39 teams) on the hidden validation set. Conclusion: We provided a practical solution to the problems of detecting heart murmurs and providing clinical diagnosis suggestions from PCGs.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aim: The George B. Moody PhysioNet Challenge 2022 raised problems of heart murmur detection and related abnormal cardiac function identification from phonocardiograms (PCGs). This work describes the novel approaches developed by our team, Revenger, to solve these problems. Methods: PCGs were resampled to 1000 $Hz$, then filtered with a Butterworth band-pass filter of order 3, cut-off frequencies 25 - 400 $H{z}$, and z-score normalized. $We$ used the multi-task learning $(MTL)$ method via hard parameter sharing to train one neural network (NN) model for all the Challenge tasks. We performed neural architecture searching among a set of network backbones, including multi-branch convolutional neural networks (CNNs), SE-ResNets, TResNets, simplified $wav2vec2$, etc. Based on a stratified splitting of the subjects, 20% of the public data was left out as a validation set for model selection. The AdamW optimizer was adopted, along with the OneCycle scheduler, to optimize the model weights. Results: Our murmur detection classifier received a weighted accuracy score of 0.736 (ranked 14th out of 40 teams) and a Challenge cost score of 12944 (ranked 19th out of 39 teams) on the hidden validation set. Conclusion: We provided a practical solution to the problems of detecting heart murmurs and providing clinical diagnosis suggestions from PCGs.