Data Driven Methods for the Prediction of Failures

A. Soualhi, H. Razik, G. Clerc
{"title":"Data Driven Methods for the Prediction of Failures","authors":"A. Soualhi, H. Razik, G. Clerc","doi":"10.1109/DEMPED.2019.8864877","DOIUrl":null,"url":null,"abstract":"The reliability and safety operation of an industrial system are the main objectives of industrial companies to remain competitive in a constantly growing market. Unexpected shutdowns can often lead to physical hazards as well as economic consequences in key sectors. Hence, fault prediction emerges as an important focus of the industry. Thus, this paper aims to detail the prognostic aspect and provides a state of the art of existing data-driven prognostic methods used in the literature. This paper shows the diversity of possible prognostic methods and the choice of one among them that will define a framework for industrials.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The reliability and safety operation of an industrial system are the main objectives of industrial companies to remain competitive in a constantly growing market. Unexpected shutdowns can often lead to physical hazards as well as economic consequences in key sectors. Hence, fault prediction emerges as an important focus of the industry. Thus, this paper aims to detail the prognostic aspect and provides a state of the art of existing data-driven prognostic methods used in the literature. This paper shows the diversity of possible prognostic methods and the choice of one among them that will define a framework for industrials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
故障预测的数据驱动方法
工业系统的可靠性和安全运行是工业公司在不断增长的市场中保持竞争力的主要目标。意外停机往往会对关键部门造成人身危害和经济后果。因此,故障预测成为业界关注的焦点。因此,本文旨在详细介绍预测方面,并提供文献中使用的现有数据驱动预测方法的最新状态。本文展示了可能的预测方法的多样性,并从中选择一种方法,这将为工业定义一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1