Tuning interpolation methods for environmental uni-dimensional (transect) surveys

You Li, M. Rendas
{"title":"Tuning interpolation methods for environmental uni-dimensional (transect) surveys","authors":"You Li, M. Rendas","doi":"10.23919/OCEANS.2015.7401934","DOIUrl":null,"url":null,"abstract":"The paper proposes rCV, a new randomised Cross Validation (CV) criterion specially designed for use with data acquired over non-uniformly scattered designs, like the linear transect surveys typical in environmental observation. The new criterion enables a robust parameterisation of interpolation algorithms, in a manner completely driven by the data and free of any modelling assumptions. The new CV method randomly chooses the hold-out sets such that they reflect, statistically, the geometry of the design with respect to the unobserved points of the area where the observations are to be extrapolated, minimising biases due to the particular geometry of the designs. Numerical results on both simulated and realistic datasets show its robustness and superiority, leading to interpolated fields with smaller error.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7401934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes rCV, a new randomised Cross Validation (CV) criterion specially designed for use with data acquired over non-uniformly scattered designs, like the linear transect surveys typical in environmental observation. The new criterion enables a robust parameterisation of interpolation algorithms, in a manner completely driven by the data and free of any modelling assumptions. The new CV method randomly chooses the hold-out sets such that they reflect, statistically, the geometry of the design with respect to the unobserved points of the area where the observations are to be extrapolated, minimising biases due to the particular geometry of the designs. Numerical results on both simulated and realistic datasets show its robustness and superiority, leading to interpolated fields with smaller error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境单维(样带)调查的调优插值方法
本文提出了rCV,这是一种新的随机交叉验证(CV)标准,专门用于在非均匀分散设计中获得的数据,如环境观测中典型的线性样条调查。新标准使插值算法的鲁棒参数化,以一种完全由数据驱动的方式,不受任何建模假设的影响。新的CV方法随机选择保留集,以便它们在统计上反映设计的几何形状,相对于要外推观察结果的区域的未观察点,最大限度地减少由于设计的特定几何形状造成的偏差。在模拟和实际数据集上的数值结果表明了该方法的鲁棒性和优越性,使得插值域的误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1