Electrohydrodynamic pumping and flow measurement

A. Richter, A. Plettner, K. Hofmann, H. Sandmaier
{"title":"Electrohydrodynamic pumping and flow measurement","authors":"A. Richter, A. Plettner, K. Hofmann, H. Sandmaier","doi":"10.1109/MEMSYS.1991.114809","DOIUrl":null,"url":null,"abstract":"A micromachined electrohydrodynamic (EHD) injection pump with improved characteristics and a novel method for flow measurement with the same structure are presented. Based on the structure of the EHD injection pump, an improved design with grid distances in the range between 10 mu m and 60 mu m was achieved, yielding a reduction in the required driving voltage. Grid areas of 2.5*2.5 mm/sup 2/ and 1*1 mm/sup 2/ were accomplished. The outer dimensions of the smallest pumps are 3*3*1.0 mm/sup 3/. One of the grids is etched back from the frontside and mounted upside down on the lower grid in order to reduce the grid distance. The two grids are bounded together by anodic bonding. The pump is mounted in a ceramic housing with two fluid ports. Based on this structure, a novel method for the measurement of fluid flow and velocity was developed. This technique is well suited for small flow rates below 100 mL/min down to some mu L/min. Volumetric flow rates down to 8 mu L/min were measured with a 2.5*2.5 mm/sup 2/ grid area.<<ETX>>","PeriodicalId":258054,"journal":{"name":"[1991] Proceedings. IEEE Micro Electro Mechanical Systems","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings. IEEE Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1991.114809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

A micromachined electrohydrodynamic (EHD) injection pump with improved characteristics and a novel method for flow measurement with the same structure are presented. Based on the structure of the EHD injection pump, an improved design with grid distances in the range between 10 mu m and 60 mu m was achieved, yielding a reduction in the required driving voltage. Grid areas of 2.5*2.5 mm/sup 2/ and 1*1 mm/sup 2/ were accomplished. The outer dimensions of the smallest pumps are 3*3*1.0 mm/sup 3/. One of the grids is etched back from the frontside and mounted upside down on the lower grid in order to reduce the grid distance. The two grids are bounded together by anodic bonding. The pump is mounted in a ceramic housing with two fluid ports. Based on this structure, a novel method for the measurement of fluid flow and velocity was developed. This technique is well suited for small flow rates below 100 mL/min down to some mu L/min. Volumetric flow rates down to 8 mu L/min were measured with a 2.5*2.5 mm/sup 2/ grid area.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电液动力泵送及流量测量
提出了一种改进特性的微机械电流体动力(EHD)喷油泵和一种具有相同结构的流量测量新方法。基于EHD喷射泵的结构,改进了网格间距在10 ~ 60 μ m之间的设计,从而降低了所需的驱动电压。完成了2.5*2.5 mm/sup 2/和1* 1mm /sup 2/的网格区域。最小泵的外形尺寸为3*3*1.0 mm/sup 3/。其中一个栅格从正面蚀刻回来,并倒置安装在较低的栅格上,以减少栅格距离。这两个栅格通过阳极键连接在一起。该泵安装在具有两个流体端口的陶瓷外壳中。在此基础上,提出了一种测量流体流量和速度的新方法。该技术非常适用于100 mL/min以下的小流量至几μ L/min。体积流量低至8 μ L/min,测量2.5*2.5 mm/sup 2/网格面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of micro-structures using non-planar lithography (NPL) In situ observation and analysis of wet etching process for micro electro-mechanical systems Silicon wafer bonding techniques for assembly of micromechanical elements Microtribology related to MEMS-Concept, measurements, applications Characteristics of an ultra-small biomotor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1