Estimation of Photosynthetic Growth Signature at the Canopy Scale Using New Genetic Algorithm-Modified Visible Band Triangular Greenness Index

Ronnie S. Concepcion, Sandy C. Lauguico, Rogelio Ruzcko Tobias, E. Dadios, A. Bandala, E. Sybingco
{"title":"Estimation of Photosynthetic Growth Signature at the Canopy Scale Using New Genetic Algorithm-Modified Visible Band Triangular Greenness Index","authors":"Ronnie S. Concepcion, Sandy C. Lauguico, Rogelio Ruzcko Tobias, E. Dadios, A. Bandala, E. Sybingco","doi":"10.1109/ARIS50834.2020.9205787","DOIUrl":null,"url":null,"abstract":"Greenness index has been proven sensitive to vegetation properties for multispectral and hyperspectral imaging. However, most controlled microclimatic cultivation chambers are equipped with low-cost RGB camera for crop growth monitoring. The lack of camera credentials specially the wavelength sensitivity of visible band provides added challenge in materializing greenness index. The proposed method in this study compensates the unavailability of generic camera peak wavelength sensitivities by employing genetic algorithm (GA) to derive a visible band triangular greenness index (TGI) based on green waveband signal normalized TGI model called gvTGI. The selection, mutation and crossover rates used in configuring the GA model are 0.2, 0.01 and 0.8 respectively. Lettuce images are captured from an aquaponic cultivation chamber for 6-week crop life cycle. The annotated and extracted gvTGI channels are inputted to deep learning models of MobileNetV2, ResNetl01 and InceptionResNetV2 for estimation of photosynthetic growth signatures at canopy scale. In predicting cultivation period in weeks after germination, MobileNetV2 bested other image classification models with accuracy of 80.56%. In estimating canopy area, MobileNetV2 bested other image regression models with $\\mathrm{R}^{2}$ of 0.9805. The proposed gvTGI proved to be highly accurate on estimation of photosynthetic growth signatures by using generic RGB camera, thus, providing a low-cost alternative for crop phenotyping.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Greenness index has been proven sensitive to vegetation properties for multispectral and hyperspectral imaging. However, most controlled microclimatic cultivation chambers are equipped with low-cost RGB camera for crop growth monitoring. The lack of camera credentials specially the wavelength sensitivity of visible band provides added challenge in materializing greenness index. The proposed method in this study compensates the unavailability of generic camera peak wavelength sensitivities by employing genetic algorithm (GA) to derive a visible band triangular greenness index (TGI) based on green waveband signal normalized TGI model called gvTGI. The selection, mutation and crossover rates used in configuring the GA model are 0.2, 0.01 and 0.8 respectively. Lettuce images are captured from an aquaponic cultivation chamber for 6-week crop life cycle. The annotated and extracted gvTGI channels are inputted to deep learning models of MobileNetV2, ResNetl01 and InceptionResNetV2 for estimation of photosynthetic growth signatures at canopy scale. In predicting cultivation period in weeks after germination, MobileNetV2 bested other image classification models with accuracy of 80.56%. In estimating canopy area, MobileNetV2 bested other image regression models with $\mathrm{R}^{2}$ of 0.9805. The proposed gvTGI proved to be highly accurate on estimation of photosynthetic growth signatures by using generic RGB camera, thus, providing a low-cost alternative for crop phenotyping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进可见光波段三角形绿度指数遗传算法估算林冠尺度下光合生长特征
在多光谱和高光谱成像中,绿度指数对植被特性非常敏感。然而,大多数可控小气候栽培室都配备了低成本的RGB摄像机,用于作物生长监测。缺乏相机的认证,特别是可见光波段的波长灵敏度给绿色指数的物化带来了新的挑战。本文提出的方法利用遗传算法(GA),基于绿色波段信号归一化的绿色指数模型(gvTGI),推导出可见光波段三角形绿色指数(TGI),弥补了普通相机峰值波长灵敏度的不可用性。配置遗传模型的选择率、变异率和交叉率分别为0.2、0.01和0.8。生菜图像是从一个水培栽培室捕获的,为期6周的作物生命周期。将注释和提取的gvTGI通道输入到MobileNetV2、ResNetl01和InceptionResNetV2的深度学习模型中,用于估算冠层尺度下的光合生长特征。在预测萌发后数周的培养周期方面,MobileNetV2以80.56%的准确率优于其他图像分类模型。在估算冠层面积方面,MobileNetV2以$\ mathm {R}^{2}$ 0.9805优于其他图像回归模型。gvTGI被证明在利用通用RGB相机估计光合生长特征方面具有很高的准确性,从而为作物表型分析提供了一种低成本的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Dual-Arm Manipulation by Adult-Sized Humanoid Robot Model Predictive Control with Laguerre Function based on Social Ski Driver Algorithm for Autonomous Vehicle Skeleton-based Hand Gesture Recognition for Assembly Line Operation Design of Continuous-Time Sigma-Delta Modulator with Noise Reduction for Robotic Light Communication and Sensing Simulation and Control of a Robotic Arm Using MATLAB, Simulink and TwinCAT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1