Performance Analysis of Data Storage in a Hyperconverged Infrastructure Using Docker and GlusterFS

Rodrigo Leite, P. Solís
{"title":"Performance Analysis of Data Storage in a Hyperconverged Infrastructure Using Docker and GlusterFS","authors":"Rodrigo Leite, P. Solís","doi":"10.1109/CLEI47609.2019.235108","DOIUrl":null,"url":null,"abstract":"Hyperconverged infrastructures use distributed file systems to store and replicate data between multiple servers while using the processing capabilities of those same servers to host virtual machines and containers. In this work, the distributed file system GlusterFS and the VMware ESXi hypervisor are used to build a hyperconverged system to host Docker containers in order to evaluate the performance of this system compared to a traditional approach in which data is stored directly on local disks of the servers. The performance of container persistent data storage is assessed using FIO (Flexible I/O Tester) storage benchmark tool with different workloads from Microsoft data centers and with multiple disk configurations in the hyperconverged system. The experimental results show that with a greater amount of writing operations and that handle large files, the performance in the hyperconverged architecture is better than in local storage, which presents an economically viable option in the implementation of storage for datacenters.","PeriodicalId":216193,"journal":{"name":"2019 XLV Latin American Computing Conference (CLEI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XLV Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI47609.2019.235108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperconverged infrastructures use distributed file systems to store and replicate data between multiple servers while using the processing capabilities of those same servers to host virtual machines and containers. In this work, the distributed file system GlusterFS and the VMware ESXi hypervisor are used to build a hyperconverged system to host Docker containers in order to evaluate the performance of this system compared to a traditional approach in which data is stored directly on local disks of the servers. The performance of container persistent data storage is assessed using FIO (Flexible I/O Tester) storage benchmark tool with different workloads from Microsoft data centers and with multiple disk configurations in the hyperconverged system. The experimental results show that with a greater amount of writing operations and that handle large files, the performance in the hyperconverged architecture is better than in local storage, which presents an economically viable option in the implementation of storage for datacenters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Docker和GlusterFS的超融合基础设施数据存储性能分析
超融合基础设施使用分布式文件系统在多个服务器之间存储和复制数据,同时使用这些服务器的处理能力来托管虚拟机和容器。在这项工作中,使用分布式文件系统GlusterFS和VMware ESXi管理程序构建一个超融合系统来承载Docker容器,以评估该系统与传统方法(数据直接存储在服务器的本地磁盘上)的性能。使用FIO (Flexible I/O Tester)存储基准测试工具对来自Microsoft数据中心的不同工作负载和超融合系统中的多个磁盘配置进行容器持久数据存储的性能评估。实验结果表明,在写操作量大、文件处理量大的情况下,超融合架构的性能优于本地存储,为数据中心的存储实现提供了一种经济可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Model for Detecting Conflicts and Dependencies in Non-Functional Requirements Using Scenarios and Use Cases Fusion of infrared and visible images using multiscale morphology Pentest on Internet of Things Devices Development of Emotional Intelligence in Computing Students: The “Experiencia 360°” Project Structuring a Folksonomy in a Community of Questions and Answers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1