An Efficient Accelerator for Sparse Convolutional Neural Networks

Weijie You, Chang Wu
{"title":"An Efficient Accelerator for Sparse Convolutional Neural Networks","authors":"Weijie You, Chang Wu","doi":"10.1109/ASICON47005.2019.8983560","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sparse convolutional neural network accelerator design on FPGAs. Similar to the DNNWEAVER architecture, our accelerator uses two-level hierarchy: multiple Processing Units (PUs) and each PU comprises a set of Processing Elements (PEs). To address the irregularity of sparse neural networks, we introduce a novel sparse dataflow for sparse CNN computing as well as weight merging method to balance the computation load on different PUs for better overall efficiency. We implement our design with 32 PUs and 14 PEs in each PU. When compared with DNNWEAVER on VGG16 network, our accelerator achieves 3.49x speedup and 3.05x energy saving on average when running at 150MHz on a Xilinx ZC706 board and reaches the speed of 400 GOPS.","PeriodicalId":319342,"journal":{"name":"2019 IEEE 13th International Conference on ASIC (ASICON)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON47005.2019.8983560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a sparse convolutional neural network accelerator design on FPGAs. Similar to the DNNWEAVER architecture, our accelerator uses two-level hierarchy: multiple Processing Units (PUs) and each PU comprises a set of Processing Elements (PEs). To address the irregularity of sparse neural networks, we introduce a novel sparse dataflow for sparse CNN computing as well as weight merging method to balance the computation load on different PUs for better overall efficiency. We implement our design with 32 PUs and 14 PEs in each PU. When compared with DNNWEAVER on VGG16 network, our accelerator achieves 3.49x speedup and 3.05x energy saving on average when running at 150MHz on a Xilinx ZC706 board and reaches the speed of 400 GOPS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏卷积神经网络的高效加速器
本文提出了一种基于fpga的稀疏卷积神经网络加速器设计。与DNNWEAVER架构类似,我们的加速器使用两级层次结构:多个处理单元(PU),每个PU包含一组处理元素(pe)。为了解决稀疏神经网络的不规则性,我们引入了一种新的稀疏数据流用于稀疏CNN计算,并引入了加权合并方法来平衡不同处理器上的计算负荷,以获得更好的整体效率。我们使用32个PU和每个PU中的14个pe来实现我们的设计。与VGG16网络上的DNNWEAVER相比,我们的加速器在Xilinx ZC706板上运行150MHz时,平均加速3.49倍,节能3.05倍,达到400 GOPS的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Protection of Cryptographic ICs Against Physical Side Channel Attacks: Invited Paper Scalable Modeling for the CPW Gap Discontinuity at Frequency up to 150 GHz A Low-delay Configurable Register for FPGA Design of High Dynamic Range and Digitalized Readout Integrated Circuit for LWIR FPAs Performance Investigation of Uniaxially Tensile Stressed Ge n-FinFETs Formed on Biaxially Strained GeOI Substrates And Its Impact On Ge CMOS Inverters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1