{"title":"A sine wave digital synthesizer based on a quadratic approximation","authors":"L. Fanucci, R. Roncella, R. Saletti","doi":"10.1109/FREQ.2001.956385","DOIUrl":null,"url":null,"abstract":"A sine evaluation architecture based on a quadratic interpolation is considered for the realization of direct digital frequency synthesizers (DDFS). In the proposed architecture the sine values are approximated with the output of a second order interpolator, whose coefficients are stored in a tiny look-up table (LUT). The memory and computation resources needed by this approach are compared with a solution where a first order interpolation is used, recently presented as the best LUT-based system for DDFS implementation. The comparison demonstrates that parabolic interpolation of the sine function asymptotically outperforms lower order approximations and that it could be considered as a better approach for frequency synthesizers with output resolution of practical interest. As a case example, a DDFS with a phase resolution of 20 b and an output resolution of 9 b has been designed. It is characterized by a maximum absolute error of 0.798 LSB, an output signal to noise ratio (SNR) of 55.60 dB and a spectral purity better than 74 dBc. The dimension of the LUT is only 104 b, and the parabolic interpolator has an estimated complexity equivalent to 175 full-adders. The structure of the evaluator is simple, easily pipelinable, and well suited to an integrated implementation.","PeriodicalId":369101,"journal":{"name":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2001.956385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
A sine evaluation architecture based on a quadratic interpolation is considered for the realization of direct digital frequency synthesizers (DDFS). In the proposed architecture the sine values are approximated with the output of a second order interpolator, whose coefficients are stored in a tiny look-up table (LUT). The memory and computation resources needed by this approach are compared with a solution where a first order interpolation is used, recently presented as the best LUT-based system for DDFS implementation. The comparison demonstrates that parabolic interpolation of the sine function asymptotically outperforms lower order approximations and that it could be considered as a better approach for frequency synthesizers with output resolution of practical interest. As a case example, a DDFS with a phase resolution of 20 b and an output resolution of 9 b has been designed. It is characterized by a maximum absolute error of 0.798 LSB, an output signal to noise ratio (SNR) of 55.60 dB and a spectral purity better than 74 dBc. The dimension of the LUT is only 104 b, and the parabolic interpolator has an estimated complexity equivalent to 175 full-adders. The structure of the evaluator is simple, easily pipelinable, and well suited to an integrated implementation.