{"title":"Kinetic Features of Synthesis of Epoxy Nanocomposites","authors":"V. Irzhak","doi":"10.5772/INTECHOPEN.85137","DOIUrl":null,"url":null,"abstract":"Kinetic features of the formation of epoxy nanocomposites with carbon (nanotubes, graphene, and graphite), metal-containing, and aluminosilicate (montmorillonite and halloysite) fillers are considered. In contrast to linear polymers, epoxy nanocomposites are obtained only via the curing of epoxy oligomers in the presence of filler or the corresponding precursor. These additives may affect the kinetics of the process and the properties of the resulting matrix. A high reactivity of epoxy groups and a thermodynamic miscibility of epoxy oligomers with many substances make it possible to use diverse curing agents and to accomplish curing reactions under various technological conditions. The mutual effect of both a matrix and nanoparticles on the kinetics of the composite formation is discussed.","PeriodicalId":280616,"journal":{"name":"Nanorods and Nanocomposites","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanorods and Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Kinetic features of the formation of epoxy nanocomposites with carbon (nanotubes, graphene, and graphite), metal-containing, and aluminosilicate (montmorillonite and halloysite) fillers are considered. In contrast to linear polymers, epoxy nanocomposites are obtained only via the curing of epoxy oligomers in the presence of filler or the corresponding precursor. These additives may affect the kinetics of the process and the properties of the resulting matrix. A high reactivity of epoxy groups and a thermodynamic miscibility of epoxy oligomers with many substances make it possible to use diverse curing agents and to accomplish curing reactions under various technological conditions. The mutual effect of both a matrix and nanoparticles on the kinetics of the composite formation is discussed.