Predicting the metascore with a subjective user experience data

Jari Takatalo, J. Häkkinen
{"title":"Predicting the metascore with a subjective user experience data","authors":"Jari Takatalo, J. Häkkinen","doi":"10.1145/2658537.2661299","DOIUrl":null,"url":null,"abstract":"The aim of this study is to test how well a subjective user experience (UX) data predicts the Metascore of a digital game. The Metascore calculated by the Metacritic.com is one of the most important indicators of a game's commercial success. Thus, game companies are interested in finding reliable in-house tools to estimate the Metascore before releasing their product. We utilized subjective survey data to test a preliminary regression model for Metascore. The model explained over 50% of the variance between the Metascores. Practically, this means that we can predict a correct Metascore class (e.g., universal acclaim) with 75% accuracy. These promising results provide good grounds for future research on the topic.","PeriodicalId":126882,"journal":{"name":"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2658537.2661299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to test how well a subjective user experience (UX) data predicts the Metascore of a digital game. The Metascore calculated by the Metacritic.com is one of the most important indicators of a game's commercial success. Thus, game companies are interested in finding reliable in-house tools to estimate the Metascore before releasing their product. We utilized subjective survey data to test a preliminary regression model for Metascore. The model explained over 50% of the variance between the Metascores. Practically, this means that we can predict a correct Metascore class (e.g., universal acclaim) with 75% accuracy. These promising results provide good grounds for future research on the topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用主观用户体验数据预测元得分
这项研究的目的是测试主观用户体验(UX)数据如何预测数字游戏的Metascore。Metacritic.com计算的Metascore是衡量游戏商业成功的最重要指标之一。因此,游戏公司有兴趣在发行产品前找到可靠的内部工具来评估Metascore。我们利用主观调查数据来检验Metascore的初步回归模型。该模型解释了metascore之间超过50%的差异。实际上,这意味着我们可以以75%的准确率预测正确的Metascore类别(例如,普遍好评)。这些有希望的结果为今后的研究提供了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding expectations with multiple controllers in an augmented reality videogame Maze commander: a collaborative asynchronous game using the oculus rift & the sifteo cubes Engines of play: how player motivation changes over time Little Newton: an educational physics game Herbert: a motion-controlled mobile game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1