A 5nm 5.7GHz@1.0V and 1.3GHz@0.5V 4kb Standard-Cell- Based Two-Port Register File with a 16T Bitcell with No Half-Selection Issue

H. Fujiwara, Y. Nien, Chih-Yu Lin, H. Pan, H. Hsu, Shin-Rung Wu, Yao-Yi Liu, Yen-Huei Chen, H. Liao, Jonathan Chang
{"title":"A 5nm 5.7GHz@1.0V and 1.3GHz@0.5V 4kb Standard-Cell- Based Two-Port Register File with a 16T Bitcell with No Half-Selection Issue","authors":"H. Fujiwara, Y. Nien, Chih-Yu Lin, H. Pan, H. Hsu, Shin-Rung Wu, Yao-Yi Liu, Yen-Huei Chen, H. Liao, Jonathan Chang","doi":"10.1109/ISSCC42613.2021.9366000","DOIUrl":null,"url":null,"abstract":"Continued scaling of the transistor increases random Vt variation, which limits the minimum operating voltage $(V_{\\mathrm{MIN}})$. Furthermore, fin formation differences between the SRAM bitcells, the peripheral circuits and the standard logic degrade area efficiency due to the empty spaces at fin-to-fin boundary and the required dummy [1]. Memories with small capacities that use the classical SRAM design suffer from this issue the most. In this paper, we will propose a 5nm digital-based SRAM macro with a 16T cell supporting a bit-write-mask operation. We adopted the standard cell rules for the proposed SRAM layout design. The area of the 16T cell is larger than the foundry’s 6T SRAM cell; however, the total macro area of a small capacity SRAM is smaller since there is no empty space in the macro and due to its simple peripheral circuit. In addition, the proposed SRAM can be directly abutted with the standard cell region. The proposed SRAM can support ultra-wide range voltage operation due to the advantages of a digital-based bitcell design.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9366000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Continued scaling of the transistor increases random Vt variation, which limits the minimum operating voltage $(V_{\mathrm{MIN}})$. Furthermore, fin formation differences between the SRAM bitcells, the peripheral circuits and the standard logic degrade area efficiency due to the empty spaces at fin-to-fin boundary and the required dummy [1]. Memories with small capacities that use the classical SRAM design suffer from this issue the most. In this paper, we will propose a 5nm digital-based SRAM macro with a 16T cell supporting a bit-write-mask operation. We adopted the standard cell rules for the proposed SRAM layout design. The area of the 16T cell is larger than the foundry’s 6T SRAM cell; however, the total macro area of a small capacity SRAM is smaller since there is no empty space in the macro and due to its simple peripheral circuit. In addition, the proposed SRAM can be directly abutted with the standard cell region. The proposed SRAM can support ultra-wide range voltage operation due to the advantages of a digital-based bitcell design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个5nm 5.7GHz@1.0V和1.3GHz@0.5V 4kb基于标准单元的双端口寄存器文件,具有16T位单元,没有半选择问题
晶体管的持续缩放增加了Vt的随机变化,这限制了最小工作电压$(V_{\ mathm {MIN}})$。此外,SRAM位单元、外围电路和标准逻辑之间的鳍形差异,由于鳍到鳍边界的空白空间和所需的假体,会降低区域效率[1]。使用经典SRAM设计的小容量存储器最容易受到这个问题的影响。在本文中,我们将提出一个5nm基于数字的SRAM宏,其16T单元支持位写掩码操作。我们采用标准单元规则进行SRAM布局设计。16T单元的面积比代工的6T SRAM单元大;然而,小容量SRAM的总宏面积较小,因为宏中没有空白空间,并且由于其简单的外围电路。此外,所提出的SRAM可以直接与标准单元区域相邻。由于基于数字位单元设计的优势,所提出的SRAM可以支持超宽范围电压工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1