Question-Driven Multiple Attention(DQMA) Model for Visual Question Answer

Jinmeng Wu, Lei Ma, Fulin Ge, Y. Hao, Pengcheng Shu
{"title":"Question-Driven Multiple Attention(DQMA) Model for Visual Question Answer","authors":"Jinmeng Wu, Lei Ma, Fulin Ge, Y. Hao, Pengcheng Shu","doi":"10.1109/AICIT55386.2022.9930294","DOIUrl":null,"url":null,"abstract":"Visual Question and Answer (VQA) refers to a typical multimodal problem in the fields of computer vision and natural language processing, which aims to give an open-ended question about an image that can be answered accurately. The currently existing visual question answer models inevitably introduce redundant and inaccurate visual information when exploring the rich interaction between complex image targets and texts, and they also fail to focus effectively on the targets in the scene. To address this problem, the Question-Driven Multiple Attention Model (QDMA) is proposed. Firstly, Faster R-CNN and LSTM are used to extract visual features of images and textual features of questions. Then we design a question-driven attention network to obtain question regions of interest in images so that the model can accurately target relevant targets in complex scenes. To establish intensive interaction between the image region of interest and the question word, the co-attentive network consisting of self-attentive and guided-attentive units is introduced. Finally, the correct answer is obtained by inputting question features and image features into an answer prediction module consisting of two-layer Multi-Layer Perceptron. On the VQA2.0 dataset, the suggested method is empirically compared with other methods. The results reveal that the model outperforms other methods, demonstrating the usefulness of the framework.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual Question and Answer (VQA) refers to a typical multimodal problem in the fields of computer vision and natural language processing, which aims to give an open-ended question about an image that can be answered accurately. The currently existing visual question answer models inevitably introduce redundant and inaccurate visual information when exploring the rich interaction between complex image targets and texts, and they also fail to focus effectively on the targets in the scene. To address this problem, the Question-Driven Multiple Attention Model (QDMA) is proposed. Firstly, Faster R-CNN and LSTM are used to extract visual features of images and textual features of questions. Then we design a question-driven attention network to obtain question regions of interest in images so that the model can accurately target relevant targets in complex scenes. To establish intensive interaction between the image region of interest and the question word, the co-attentive network consisting of self-attentive and guided-attentive units is introduced. Finally, the correct answer is obtained by inputting question features and image features into an answer prediction module consisting of two-layer Multi-Layer Perceptron. On the VQA2.0 dataset, the suggested method is empirically compared with other methods. The results reveal that the model outperforms other methods, demonstrating the usefulness of the framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
问题驱动多注意(DQMA)视觉问答模型
视觉问答(Visual Question and Answer, VQA)是计算机视觉和自然语言处理领域中典型的多模态问题,其目的是针对图像给出一个可以准确回答的开放式问题。现有的视觉问答模型在探索复杂图像目标与文本之间的丰富交互时,不可避免地引入了冗余和不准确的视觉信息,也不能有效地关注场景中的目标。为了解决这一问题,提出了问题驱动的多重注意模型(QDMA)。首先,利用Faster R-CNN和LSTM提取图像的视觉特征和问题的文本特征。然后设计一个问题驱动的关注网络,获取图像中感兴趣的问题区域,使模型能够准确地定位复杂场景中的相关目标。为了在图像感兴趣区域和问题词之间建立紧密的交互关系,引入了由自关注单元和引导关注单元组成的共关注网络。最后,将问题特征和图像特征输入到由两层多层感知机组成的答案预测模块中,得到正确答案。在VQA2.0数据集上,与其他方法进行了实证比较。结果表明,该模型优于其他方法,证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maritime Object Detection based on YOLOx for Aviation Image STATCOM compensation and control strategy of star cascade H-bridge under unbalanced conditions Detection and Recognition of Road Information and Lanes Based on Deep Learning Event Extraction for Military Target Motion in Open-source Military News A Similarity Measurement Algorithm for Spacecraft Telemetry Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1