Robert Najvirt, U. Schmid, M. Hofbauer, Matthias Függer, Thomas Nowak, K. Schweiger
{"title":"Experimental Validation of a Faithful Binary Circuit Model","authors":"Robert Najvirt, U. Schmid, M. Hofbauer, Matthias Függer, Thomas Nowak, K. Schweiger","doi":"10.1145/2742060.2742081","DOIUrl":null,"url":null,"abstract":"Fast digital timing simulations based on continuous-time, digital-value circuit models are an attractive and heavily used alternative to analog simulations. Models based on analytic delay formulas are particularly interesting here, as they also facilitate formal verification and delay bound synthesis of complex circuits. Recently, Függer et al. (arXiv:1406.2544 [cs.OH]) proposed a circuit model based on so-called involution channels. It is the first binary circuit model that realistically captures solvability of short-pulse filtration, a non-trivial glitch propagation problem related to building one-shot inertial delays. In this work, we address the question of whether involution channels also accurately model the delay of real circuits. Using both Spice simulations and physical measurements, we confirm that modeling an inverter chain by involution channels accurately describes reality. We also demonstrate that transitions in vanishing pulse trains are accurately predicted by the involution model. For our Spice simulations, we used both UMC-90 and UMC-65 technology, with varying supply voltages from nominal down to near sub-threshold range. The measurements were performed on a special-purpose UMC-90 ASIC that combines an inverter chain with low-intrusive high-speed on-chip analog amplifiers.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Fast digital timing simulations based on continuous-time, digital-value circuit models are an attractive and heavily used alternative to analog simulations. Models based on analytic delay formulas are particularly interesting here, as they also facilitate formal verification and delay bound synthesis of complex circuits. Recently, Függer et al. (arXiv:1406.2544 [cs.OH]) proposed a circuit model based on so-called involution channels. It is the first binary circuit model that realistically captures solvability of short-pulse filtration, a non-trivial glitch propagation problem related to building one-shot inertial delays. In this work, we address the question of whether involution channels also accurately model the delay of real circuits. Using both Spice simulations and physical measurements, we confirm that modeling an inverter chain by involution channels accurately describes reality. We also demonstrate that transitions in vanishing pulse trains are accurately predicted by the involution model. For our Spice simulations, we used both UMC-90 and UMC-65 technology, with varying supply voltages from nominal down to near sub-threshold range. The measurements were performed on a special-purpose UMC-90 ASIC that combines an inverter chain with low-intrusive high-speed on-chip analog amplifiers.