VisCAT: spatio-temporal visualization and aggregation of categorical attributes in twitter data

T. Ghanem, A. Magdy, Mashaal Musleh, Sohaib Ghani, M. Mokbel
{"title":"VisCAT: spatio-temporal visualization and aggregation of categorical attributes in twitter data","authors":"T. Ghanem, A. Magdy, Mashaal Musleh, Sohaib Ghani, M. Mokbel","doi":"10.1145/2666310.2666363","DOIUrl":null,"url":null,"abstract":"In the last few years, Twitter data has become so popular that it is used in a rich set of new applications, e.g., real-time event detection, demographic analysis, and news extraction. As user-generated data, the plethora of Twitter data motivates several analysis tasks that make use of activeness of 271+ Million Twitter users. This demonstration presents VisCAT; a tool for aggregating and visualizing categorical attributes in Twitter data. VisCAT outputs visual reports that provide spatial analysis through interactive map-based visualization for categorical attributes---such as tweet language or source operating system---at different zoom levels. The visual reports are built based on user-selected data in arbitrary spatial and temporal ranges. For this data, VisCAT employs a hierarchical spatial data structure to materialize the count of each category at multiple spatial levels. We demonstrate VisCAT, using real Twitter dataset. The demonstration includes use cases on tweet language and tweet source attributes in the region of Gulf Arab states, which can be used for deducing thoughtful conclusions on demographics and living levels in local societies.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"83 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In the last few years, Twitter data has become so popular that it is used in a rich set of new applications, e.g., real-time event detection, demographic analysis, and news extraction. As user-generated data, the plethora of Twitter data motivates several analysis tasks that make use of activeness of 271+ Million Twitter users. This demonstration presents VisCAT; a tool for aggregating and visualizing categorical attributes in Twitter data. VisCAT outputs visual reports that provide spatial analysis through interactive map-based visualization for categorical attributes---such as tweet language or source operating system---at different zoom levels. The visual reports are built based on user-selected data in arbitrary spatial and temporal ranges. For this data, VisCAT employs a hierarchical spatial data structure to materialize the count of each category at multiple spatial levels. We demonstrate VisCAT, using real Twitter dataset. The demonstration includes use cases on tweet language and tweet source attributes in the region of Gulf Arab states, which can be used for deducing thoughtful conclusions on demographics and living levels in local societies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VisCAT:推特数据中分类属性的时空可视化和聚合
在过去的几年里,Twitter数据变得如此流行,以至于它被用于丰富的新应用程序中,例如,实时事件检测,人口统计分析和新闻提取。作为用户生成的数据,大量的Twitter数据激发了一些分析任务,这些任务利用了2.71亿Twitter用户的活跃度。这个演示展示了VisCAT;用于聚合和可视化Twitter数据中的分类属性的工具。VisCAT输出可视化报告,通过交互式基于地图的可视化,以不同的缩放级别为分类属性(如tweet语言或源操作系统)提供空间分析。可视化报告是基于用户在任意空间和时间范围内选择的数据构建的。对于这些数据,VisCAT采用分层空间数据结构来实现在多个空间级别上每个类别的计数。我们使用真实的Twitter数据集来演示VisCAT。该演示包括海湾阿拉伯国家地区的推文语言和推文源属性用例,可用于推断有关当地社会人口统计和生活水平的深思熟虑的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1