{"title":"Single electron amplification in a \"Single-MCP + micromegas + pads\" detector","authors":"J. Va’vra, T. Sumiyoshi","doi":"10.2172/833089","DOIUrl":null,"url":null,"abstract":"We have tested a new gaseous detector structure based on a tandem of two parts, the first one is a single MCP plate (sometimes called the Microchannel plate or Capillary), and the second one is a Micromegas with pad readout. The new detector responds very well to a single electron signal, both in helium-based and Argon-based gases, and it can reach a very large gain. Our overall aim is to couple the proposed electrode structure to a Bialkali photocathode. The main advantage of this avenue of research is that such a detector would operate easily in a very large magnetic field, and it could achieve excellent position resolution and large pixelization, compared to existing vacuum-based MCP-PMT detectors.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/833089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We have tested a new gaseous detector structure based on a tandem of two parts, the first one is a single MCP plate (sometimes called the Microchannel plate or Capillary), and the second one is a Micromegas with pad readout. The new detector responds very well to a single electron signal, both in helium-based and Argon-based gases, and it can reach a very large gain. Our overall aim is to couple the proposed electrode structure to a Bialkali photocathode. The main advantage of this avenue of research is that such a detector would operate easily in a very large magnetic field, and it could achieve excellent position resolution and large pixelization, compared to existing vacuum-based MCP-PMT detectors.